login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*(n-1)*(n-2)/13).
2

%I #20 Sep 08 2022 08:44:37

%S 0,0,0,0,1,4,9,16,25,38,55,76,101,132,168,210,258,313,376,447,526,613,

%T 710,817,934,1061,1200,1350,1512,1686,1873,2074,2289,2518,2761,3020,

%U 3295,3586,3893,4218,4560,4920,5298,5695,6112,6549,7006,7483

%N a(n) = floor(n*(n-1)*(n-2)/13).

%H Vincenzo Librandi, <a href="/A011895/b011895.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,0,0,0,0,0,1,-3,3,-1).

%F a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-13) -3*a(n-14) +3*a(n-15) -a(n-16). -_R. J. Mathar_, Apr 15 2010

%F G.f.: x^4*(1 +x +2*x^5 +2*x^9 -x^10 +x^11)/((1 -x)^4*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 +x^12)). - _Colin Barker_, Sep 07 2016

%o (Magma) [n*(n-1)*(n-2) div 13: n in [0..50]]; // _Vincenzo Librandi_, Sep 07 2016

%o (PARI) concat(vector(4), Vec(x^4*(1 +x +2*x^5 +2*x^9 -x^10 +x^11) / ((1 -x)^4*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 +x^12)) + O(x^50))) \\ _Colin Barker_, Sep 07 2016

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_