login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011893
a(n) = floor( n*(n-1)*(n-2)/11 ).
2
0, 0, 0, 0, 2, 5, 10, 19, 30, 45, 65, 90, 120, 156, 198, 248, 305, 370, 445, 528, 621, 725, 840, 966, 1104, 1254, 1418, 1595, 1786, 1993, 2214, 2451, 2705, 2976, 3264, 3570, 3894, 4238, 4601, 4984, 5389, 5814, 6261, 6731, 7224, 7740, 8280, 8844, 9434, 10049, 10690
OFFSET
0,5
LINKS
FORMULA
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-11) -3*a(n-12) +3*a(n-13) -a(n-14). - R. J. Mathar, Apr 15 2010
G.f.: x^4*(2-x+x^2+2*x^3-2*x^4+2*x^5+x^6+x^9)/((1-x)^4*(1+x+x^2+x^3+x^4+x^5 +x^6+x^7+x^8+x^9+x^10)). - Peter J. C. Moses, Jun 02 2014
MATHEMATICA
Table[Floor[n(n-1)(n-2)/11], {n, 0, 40}] (* or *)
LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 0, 2, 5, 10, 19, 30, 45, 65, 90, 120, 156}, 50] (* Harvey P. Dale, Nov 23 2018 *)
PROG
(Magma) [Floor(6*Binomial(n, 3)/11): n in [0..50]]; // G. C. Greubel, Oct 06 2024
(SageMath) [6*binomial(n, 3)//11 for n in range(51)] # G. C. Greubel, Oct 06 2024
CROSSREFS
Cf. A011886.
Sequence in context: A018739 A325648 A325718 * A132210 A000098 A024827
KEYWORD
nonn,easy
EXTENSIONS
a(41) onwards from G. C. Greubel, Oct 06 2024
STATUS
approved