login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor( n*(n - 1)/12 ).
8

%I #21 Sep 02 2024 08:37:34

%S 0,0,0,0,1,1,2,3,4,6,7,9,11,13,15,17,20,22,25,28,31,35,38,42,46,50,54,

%T 58,63,67,72,77,82,88,93,99,105,111,117,123,130,136,143,150,157,165,

%U 172,180,188,196,204,212,221,229,238,247,256,266,275,285,295,305,315,325,336

%N a(n) = floor( n*(n - 1)/12 ).

%H Paolo Xausa, <a href="/A011865/b011865.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1,-1,2,-1,1,-2,1).

%F From _R. J. Mathar_, Apr 15 2010: (Start)

%F a(n) = +2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) -a(n-6) +2*a(n-7) -a(n-8) +a(n-9) -2*a(n-10) +a(n-11).

%F G.f.: x^4*(x^4+1-x^3-x+x^2) / ((1-x)^3*(1+x+x^2)*(x^2+1)*(x^4-x^2+1)). (End)

%p seq(floor(binomial(n-1,2)/6), n=1..53); # _Zerinvary Lajos_, Jan 12 2009

%t Table[Floor[n*(n - 1)/12], {n, 0, 100}] (* _Paolo Xausa_, Sep 02 2024 *)

%K nonn,easy

%O 0,7

%A _N. J. A. Sloane_