login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(binomial(n,9)/9).
1

%I #19 Jun 13 2023 11:10:34

%S 0,0,0,0,0,0,0,0,0,0,1,6,24,79,222,556,1271,2701,5402,10264,18662,

%T 32658,55268,90798,145278,226997,347172,520758,767433,1112778,1589683,

%U 2240008,3116533,4285233,5827917,7845273

%N a(n) = floor(binomial(n,9)/9).

%H <a href="/index/Rec#order_82">Index entries for linear recurrences with constant coefficients</a>, signature (10, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 9, 9, -45, 120, -210, 252, -210, 120, -45, 10, -1).

%t Floor[Binomial[Range[0,80],9]/9] (* _Harvey P. Dale_, Aug 30 2016 *)

%o (Sage) [floor(binomial(n,9)/9) for n in range(0,36)] # _Zerinvary Lajos_, Dec 01 2009

%o (PARI) a(n) = binomial(n,9)\9; \\ _Michel Marcus_, Jan 29 2018

%Y A column of triangle A011857.

%K nonn

%O 0,12

%A _N. J. A. Sloane_