login
A011797
a(n) = floor(C(n,6)/7).
7
0, 0, 0, 0, 0, 0, 0, 1, 4, 12, 30, 66, 132, 245, 429, 715, 1144, 1768, 2652, 3876, 5537, 7752, 10659, 14421, 19228, 25300, 32890, 42287, 53820, 67860, 84825, 105183, 129456, 158224, 192129, 231880, 278256
OFFSET
0,9
COMMENTS
a(n-1) is the number of aperiodic necklaces (Lyndon words) with 7 black beads and n-7 white beads.
FORMULA
G.f.: (1+x^3)^2/((1-x)^4(1-x^2)^2(1-x^7))*x^7.
a(n) = floor(binomial(n+1,7)/(n+1)). [Gary Detlefs, Nov 23 2011]
G.f.: (x^6/7)*(1/(1-x)^7-1/(1- x^7)). - Herbert Kociemba, Oct 16 2016
MATHEMATICA
CoefficientList[Series[x^6/7 (1/(1-x)^7-1/(1- x^7)), {x, 0, 40}], x]; (* Herbert Kociemba, Oct 16 2016 *)
PROG
(PARI) a(n) = binomial(n, 6)\7; \\ Michel Marcus, Oct 16 2016
CROSSREFS
Cf. A000031, A001037, A051168. Same as A051172(n+1).
First differences of A011853.
A column of triangle A011847.
Sequence in context: A166213 A274250 A004036 * A051172 A032192 A212587
KEYWORD
nonn,easy
STATUS
approved