login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X 3 matrices whose determinant is 1 mod n.
8

%I #42 Oct 23 2022 02:54:21

%S 1,168,5616,43008,372000,943488,5630688,11010048,36846576,62496000,

%T 212427600,241532928,810534816,945955584,2089152000,2818572288,

%U 6950204928,6190224768,16934047920,15998976000,31621943808,35687836800

%N Number of 3 X 3 matrices whose determinant is 1 mod n.

%C Order of the group SL(3,Z_n). For n > 2, a(n) is divisible by 48. - _Jianing Song_, Nov 24 2018

%H T. D. Noe, <a href="/A011785/b011785.txt">Table of n, a(n) for n = 1..1000</a>

%H Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.

%F Multiplicative with a(p^e) = p^(8*e-5)*(p^3 - 1)*(p^2 - 1). - _Vladeta Jovovic_, Nov 18 2001

%F For a formula see A064767.

%F a(n) = A046970(n)*A063453(n)*A000578(n)*A003557(n)^5. - _R. J. Mathar_, Mar 30 2011

%F a(n) = A064767(n)/phi(n). - _Jianing Song_, Nov 24 2018

%F Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^5/((p-1)^3 * (p+1)^2 * (p^2 + p + 1) * (p^6 + p^4 + p^2 + 1))) = 1.0061577672748872278355775942508642214184417621389767880397578015151659965... - _Vaclav Kotesovec_, Sep 19 2020

%F Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 - (p^3 + p^2 -1)/p^6) = 0.08630488937... . - _Amiram Eldar_, Oct 23 2022

%t a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* _Jean-François Alcover_, Mar 21 2017 *)

%o (PARI) a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ _Michel Marcus_, Jun 30 2015

%Y Cf. A000010, A000578, A003557, A003800, A046970, A063453.

%Y Cf. A000056 (SL(2,Z_n)), A011786 (SL(4,Z_n)).

%Y Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).

%K nonn,mult

%O 1,2

%A Benjamin T. Love (benlove(AT)preston.polaristel.net)

%E More terms from _John W. Layman_, Feb 16 2001

%E Further terms from _Vladeta Jovovic_, Oct 29 2001