login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k*phi(k).
12

%I #40 May 08 2024 03:50:34

%S 1,3,9,17,37,49,91,123,177,217,327,375,531,615,735,863,1135,1243,1585,

%T 1745,1997,2217,2723,2915,3415,3727,4213,4549,5361,5601,6531,7043,

%U 7703,8247,9087,9519,10851,11535,12471,13111,14751,15255,17061,17941,19021,20033

%N a(n) = Sum_{k=1..n} k*phi(k).

%C a(n) = Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} y. Sum_{(x,y): 1<=x<=y<=n, 1=gcd(x,y)} x = (a(n)+1)/2. - _Vladeta Jovovic_, Jan 02 2003

%C Equals row sums of triangle A110663. Example: a(4) = 17 = (6 + 5 + 4 + 2), where row 4 of triangle A110663 = (6, 5, 4, 2). - _Gary W. Adamson_, Jul 26 2008

%H Seiichi Manyama, <a href="/A011755/b011755.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..2001 from Indranil Ghosh)

%F Asymptotically: a(n) ~ C*n^3 with C=0.20264.... - _Benoit Cloitre_, Jan 14 2002

%F Asymptotically: a(n) ~ (2/Pi^2)*n^3. - _Vladeta Jovovic_, Jan 02 2003

%F a(n) = Sum_{k=1..n} phi(k^2). - _Vaclav Kotesovec_, May 08 2024

%t Accumulate[Table[k*EulerPhi[k], {k, 1, 50}]] (* _Vaclav Kotesovec_, Sep 10 2018 *)

%o (PARI) a(n) = sum(k=1, n, k*eulerphi(k)); \\ _Michel Marcus_, Feb 13 2017

%o (Python)

%o from sympy import totient

%o def A011755(n): return sum(k*totient(k) for k in range(1,n+1)) # _Chai Wah Wu_, Feb 21 2023

%Y Partial sums of A002618.

%Y Cf. A000010, A002088, A110663, A319087.

%K nonn

%O 1,2

%A _N. J. A. Sloane_