Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #72 Apr 19 2024 17:38:51
%S 1,2,2,4,3,6,6,5,6,8,9,13,10,11,14,15,11,14,14,17,17,20,19,22,16,18,
%T 24,30,25,25,25,26,26,34,29,32,27,34,36,32,28,39,38,39,34,34,45,38,41,
%U 33,41,46,42,35,39,42,39,40,42,48,56,56,49,57,56,51,45,47,55,55,64,68,58
%N Number of ones in the binary expansion of 3^n.
%C Conjecture: a(n)/n tends to log(3)/(2*log(2)) = 0.792481250... (A094148). - _Ed Pegg Jr_, Dec 05 2002
%C Senge & Straus prove that for every m, there is some N such that for all n > N, a(n) > m. Dimitrov & Howe make this effective, proving that for n > 25, a(n) > 22. - _Charles R Greathouse IV_, Aug 23 2021
%C Ed Pegg's conjecture means that about half of the bits of 3^n are nonzero. It appears that the same is true for 5^n (A000351, cf. A118738) and 7^n (A000420). - _M. F. Hasler_, Apr 17 2024
%D S. Wolfram, "A new kind of science", p. 903.
%H Hugo Pfoertner, <a href="/A011754/b011754.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H Vassil S. Dimitrov and Everett W. Howe, <a href="https://arxiv.org/abs/2105.06440">Powers of 3 with few nonzero bits and a conjecture of Erdős</a>, arXiv:2105.06440 [math.NT], 2021.
%H Taylor Dupuy and David E. Weirich, <a href="https://doi.org/10.1016/j.jnt.2015.05.022">Bits of 3^n in binary, Wieferich primes and a conjecture of Erdős</a>, Journal of Number Theory, Volume 158, January 2016, Pages 268-280.
%H Hugo Pfoertner, <a href="/A011754/a011754.png">Plot of a(n) - 0.79248*n</a>, +-Pi*sqrt(n), n up to 10^6.
%H H. G. Senge and E. G. Straus, <a href="https://doi.org/10.1007/BF02018464">PV-numbers and sets of multiplicity</a>, Periodica Mathematica Hungarica 3 (1973), pp. 93-100.
%F a(n) = A000120(3^n). - _Benoit Cloitre_, Dec 06 2002
%F a(n) = A000120(A000244(n)). - _Reinhard Zumkeller_, Aug 14 2015
%p f:= n -> convert(convert(3^n,base,2),`+`):
%p map(f, [$0..100]); # _Robert Israel_, Apr 17 2024
%t Table[DigitCount[3^n, 2][[1]], {n, 0, 100}] (* _Stefan Steinerberger_, Apr 03 2006 *)
%t DigitCount[3^Range[0,100],2,1] (* _Harvey P. Dale_, Apr 06 2012 *)
%o (Haskell) a011754 = a000120 . a000244 -- _Reinhard Zumkeller_, Aug 14 2015
%o (Magma) [&+Intseq(3^n, 2): n in [0..79]]; // _Vincenzo Librandi_, Nov 28 2018
%o (PARI) a(n)=hammingweight(3^n) \\ _Charles R Greathouse IV_, Feb 09 2017
%o (Python) A011754 = lambda n: (3**n).bit_count() # _M. F. Hasler_, Apr 17 2024
%Y Cf. A007088, A000120 (Hamming weight), A000244 (3^n), A004656, A261009, A094148.
%Y Cf. A118738 (same for 5^n).
%K nonn,nice,easy
%O 0,2
%A _Allan C. Wechsler_, Dec 11 1999
%E More terms from _Stefan Steinerberger_, Apr 03 2006