login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n minus (number of 1's in binary expansion of n). Also highest power of 2 dividing n!.
143

%I #224 Feb 01 2024 02:47:47

%S 0,0,1,1,3,3,4,4,7,7,8,8,10,10,11,11,15,15,16,16,18,18,19,19,22,22,23,

%T 23,25,25,26,26,31,31,32,32,34,34,35,35,38,38,39,39,41,41,42,42,46,46,

%U 47,47,49,49,50,50,53,53,54,54,56,56,57,57,63,63,64,64,66,66,67,67,70

%N a(n) = n minus (number of 1's in binary expansion of n). Also highest power of 2 dividing n!.

%C Terms of A005187 repeated. - _Lekraj Beedassy_, Jul 06 2004

%C This sequence shows why in binary 0 and 1 are the only two numbers n such that n equals the sum of its digits raised to the consecutive powers (equivalent to the base-10 sequence A032799). 1 raised to any consecutive power is still 1 and thus any sum of digits raised to consecutive powers for any n > 1 falls short of equaling the value of n by the n-th term of this sequence. - _Alonso del Arte_, Jul 27 2004

%C Also the number of trailing zeros in the base-2 representation of n!. - _Hieronymus Fischer_, Jun 18 2007

%C Partial sums of A007814. - _Philippe Deléham_, Jun 21 2012

%C If n is in A089633 and n > 0, then a(n) = n - floor(log_2(n+1)). - _Douglas Latimer_, Jul 25 2012

%C For n > 1, denominators of integral numerator polynomials L(n,x) for the Legendre polynomials with o.g.f. 1/sqrt(1 - t*x + x^2). - _Tom Copeland_, Feb 04 2016

%C The definition of this sequence explains why, for n > 1, the highest power of 2 dividing n! added to the number of 1's in the binary expansion of n is equal to n. This result is due to the French mathematician Adrien Legendre (1752-1833) [see the Honsberger reference]. - _Bernard Schott_, Apr 07 2017

%C a(n) is the total number of 2's in the prime factorizations over the first n positive integers. The expected number of 2's in the factorization of an integer n is 1 (as n->infinity). Generally, the expected number of p's (for a prime p) is 1/(p-1). - _Geoffrey Critzer_, Jun 05 2017

%D K. Atanassov, On Some of Smarandache's Problems, section 7, on the 61st problem, page 42, American Research Press, 1999, 16-21.

%D G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964; see Lemma 3.1.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 305.

%D H. Davenport, The Higher Arithmetic, 7th ed. 1999, Cambridge University Press, p. 216, exercise 1.07.

%D R. Honsberger, Mathematical Gems II, Dolciani Mathematical Expositions, 1976, pp. 1-6.

%H Hieronymus Fischer, <a href="/A011371/b011371.txt">Table of n, a(n) for n = 0..10000</a> (first 1000 terms from T. D. Noe)

%H Laurent Alonso, Edward M. Reingold, and René Schott, <a href="http://dx.doi.org/10.1016/0020-0190(93)90135-V">Determining the majority</a>, Inform. Process. Lett. 47 (1993), no. 5, 253-255.

%H Laurent Alonso, Edward M. Reingold, and René Schott, <a href="http://dx.doi.org/10.1137/S0097539794275914">The average-case complexity of determining the majority</a>, SIAM J. Comput. 26 (1997), no. 1, 1-14.

%H Sung-Hyuk Cha, <a href="http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-60.pdf">On Integer Sequences Derived from Balanced k-ary Trees</a>, Applied Mathematics in Electrical and Computer Engineering, 2012.

%H Sung-Hyuk Cha, <a href="http://naun.org/multimedia/UPress/ami/16-125.pdf">On Complete and Size Balanced k-ary Tree Integer Sequences</a>, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From _N. J. A. Sloane_, Dec 24 2012

%H R. Hinze, <a href="https://www.cs.ox.ac.uk/people/ralf.hinze/publications/CSC.pdf">Concrete stream calculus: An extended study</a>, J. Funct. Progr. 20 (5-6) (2010) 463-535, <a href="https://doi.org/10.1017/S0956796810000213">doi</a>, Section 4.4.

%H Keith Johnson and Kira Scheibelhut, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.123.4.338">Rational polynomials that take integer values at the Fibonacci numbers</a>, American Mathematical Monthly 123.4 (2016): 338-346. See omega_2.

%H S-C Liu and J. C.-C. Yeh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Liu2/liu6.html">Catalan numbers modulo 2^k</a>, J. Int. Seq. 13 (2010), 10.5.4, eq. (5).

%H K. Matthews, <a href="http://www.numbertheory.org/php/factorial.html">Computing the prime-power factorization of n!</a>.

%H A. Mir, F. Rossello and L. Rotger, <a href="http://arxiv.org/abs/1202.1223">A new balance index for phylogenetic trees</a>, arXiv preprint arXiv:1202.1223 [q-bio.PE], 2012.

%H A. M. Oller-Marcen and J. Maria Grau, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Oller/oller3.html">On the Base-b Expansion of the Number of Trailing Zeros of b^k!</a>, J. Int. Seq. 14 (2011) 11.6.8.

%H Michael E. Saks and Michael Werman, <a href="http://dx.doi.org/10.1007/BF01275672">On computing majority by comparisons</a>, Combinatorica 11 (1991), no. 4, 383-387.

%H Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>.

%H Zhujun Zhang, <a href="https://www.researchgate.net/publication/333261503_A_Note_on_Counting_Binomial_Heaps">A Note on Counting Binomial Heaps</a>, ResearchGate (2019).

%F a(n) = a(floor(n/2)) + floor(n/2) = floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ... - _Henry Bottomley_, Apr 24 2001

%F G.f.: A(x) = (1/(1 - x))*Sum_{k>=1} x^(2^k)/(1 - x^(2^k)). - _Ralf Stephan_, Apr 11 2002

%F a(n) = n - A000120(n). - _Lekraj Beedassy_, Sep 01 2003

%F a(n) = A005187(n) - n, n >= 0.

%F a(n) = A007814(A000142(n)). - _Reinhard Zumkeller_, Apr 09 2004

%F From _Hieronymus Fischer_, Jun 25 and Aug 13 2007: (Start)

%F a(n) = Sum_{k=2..n} Sum_{j|k, j >= 2} (floor(log_2(j)) - floor(log_2(j - 1))).

%F The g.f. can be expressed in terms of a Lambert series, in that g(x) = L[b(k)](x)/(1 - x), where

%F L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1 - x^k) is a Lambert series with b(k) = 1, if k is a power of 2, otherwise b(k) = 0.

%F G.f.: g(x) = (1/(1-x))*Sum_{k>0} c(k)*x^k, where c(k) = Sum_{j>1, j|k} (floor(log_2(j)) - floor(log_2(j-1))).

%F Recurrence:

%F a(n) = floor(n/2) + a(floor(n/2));

%F a(2*n) = n + a(n);

%F a(n*2^m) = n*(2^m - 1) + a(n).

%F a(2^m) = 2^m - 1, m >= 0.

%F Asymptotic behavior:

%F a(n) = n + O(log(n)),

%F a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.

%F a(n) <= n - 1; equality holds for powers of 2.

%F a(n) >= n - 1 - floor(log_2(n)); equality holds for n = 2^m - 1, m > 0.

%F lim inf (n - a(n)) = 1, for n->oo.

%F lim sup (n - log_2(n) - a(n)) = 0, for n->oo.

%F lim sup (a(n+1) - a(n) - log_2(n)) = 0, for n->oo. (End)

%F a(n) = Sum_{k >= 0} A030308(n, k)*A000225(k). - _Philippe Deléham_, Oct 16 2011

%F a(n) = Sum_{k=0..floor(log_2(n+1))} f^(k+1)(n), where f(n) = (n - (n mod 2))/2 and f^(k+1) is the (k+1)-th composition of f. - _Joseph Wheat_, Mar 01 2018

%e a(3) = 1 because 3 in binary is 11 (two 1's) and 3 - 2 = 1.

%e a(4) = 3 because 4 in binary is 100 (one 1 and two 0's) and 4 - 1 = 3.

%e a(5) = 3 because 5 in binary is 101 (a zero between two 1's) and 5 - 2 = 3.

%e a(100) = 97.

%e a(10^3) = 994.

%e a(10^4) = 9995.

%e a(10^5) = 99994.

%e a(10^6) = 999993.

%e a(10^7) = 9999992.

%e a(10^8) = 99999988.

%e a(10^9) = 999999987.

%e G.f. = x^2 + x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 7*x^9 + 8*x^10 + ...

%p A011371(n) = RETURN(((2^(l))-1)+sum('(j*floor((n-(2^l)+2^j)/(2^(j+1))))','j'=1..l)); # after K. Atanassov. Here l is [ log2(n) ].

%p A011371 := n -> n - add(i,i=convert(n,base,2)): # _Peter Luschny_, May 02 2009

%p read("transforms") : A011371 := proc(n) n-wt(n) ; end proc: # _R. J. Mathar_, May 15 2013

%t -1 + Length[ Last[ Split[ IntegerDigits[ 2(n!), 2 ] ] ] ], FoldList[ Plus, 0, Fold[ Flatten[ {#1, #2, #1} ]&, 0, Range[ 6 ] ] ]

%t Table[IntegerExponent[n!, 2], {n, 0, 127}]

%t Table[n - DigitCount[n, 2, 1], {n, 0, 127}]

%t Table[t = 0; p = 2; While[s = Floor[n/p]; t = t + s; s > 0, p *= 2]; t, {n, 0, 100} ]

%o (PARI) {a(n) = if( n<0, 0, valuation(n!, 2))}; /* _Michael Somos_, Oct 24 2002 */

%o (PARI) {a(n) = if( n<0, 0, sum(k=1, n, n\2^k))}; /* _Michael Somos_, Oct 24 2002 */

%o (PARI) {a(n) = if( n<0, 0, n - subst( Pol( binary( n ) ), x, 1))}; /* _Michael Somos_, Aug 28 2007 */

%o (PARI) a(n)=sum(k=1,log(n+1)\log(2),n>>k) \\ _Charles R Greathouse IV_, Oct 03 2012

%o (PARI) a(n)=my(s);while(n>>=1,s+=n);s \\ _Charles R Greathouse IV_, Aug 09 2013

%o (PARI) a(n) = n - hammingweight(n); \\ _Michel Marcus_, Jun 05 2014

%o (Magma) [Valuation(Factorial(n), 2): n in [0..80]]; // _Bruno Berselli_, Aug 05 2013

%o (Haskell)

%o a011371 n = n - a000120 n -- _Reinhard Zumkeller_, Jan 24 2014

%o (Python) [n - bin(n)[2:].count("1") for n in range(101)] # _Indranil Ghosh_, Apr 09 2017

%o (Python) # 3.10+

%o def A011371(n): return n-n.bit_count() # _Chai Wah Wu_, Jul 09 2022

%Y Cf. A000120, A005187, A054861, A032799, A067080, A098844, A132027.

%Y a(n) = Sum_{k=1..n} A007814(k), n >= 1, a(0) = 0.

%K nonn,nice,easy

%O 0,5

%A _N. J. A. Sloane_

%E Examples added by _Hieronymus Fischer_, Jun 06 2012