Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Dec 15 2023 15:55:02
%S 1,13,91,455,1820,6188,18564,50388,125970,293930,646646,1352078,
%T 2704156,5200300,9657700,17383860,30421755,51895935,86493225,
%U 141120525,225792840,354817320,548354040,834451800,1251677700,1852482996,2707475148,3910797436,5586853480
%N a(n) = binomial(n,12).
%C Coordination sequence for 12-dimensional cyclotomic lattice Z[zeta_13].
%C In this sequence only 13 is prime. - _Artur Jasinski_, Dec 02 2007
%H T. D. Noe, <a href="/A010965/b010965.txt">Table of n, a(n) for n = 12..1000</a>
%H Matthias Beck and Serkan Hosten, <a href="http://arxiv.org/abs/math/0508136">Cyclotomic polytopes and growth series of cyclotomic lattices</a>, arXiv:math/0508136 [math.CO], 2005-2006.
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
%F a(n) = A110555(n+1,12). - _Reinhard Zumkeller_, Jul 27 2005
%F a(n+11) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)/12!. - _Artur Jasinski_, Dec 02 2007, _R. J. Mathar_, Jul 07 2009
%F G.f.: x^12/(1-x)^13. - _Zerinvary Lajos_, Aug 06 2008, _R. J. Mathar_, Jul 07 2009
%F From _Amiram Eldar_, Dec 10 2020: (Start)
%F Sum_{n>=12} 1/a(n) = 12/11.
%F Sum_{n>=12} (-1)^n/a(n) = A001787(12)*log(2) - A242091(12)/11! = 24576*log(2) - 3934820/231 = 0.9322955884... (End)
%p seq(binomial(n,12),n=12..36); # _Zerinvary Lajos_, Aug 06 2008
%t Table[Binomial[n,12],{n,12,50}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 22 2011 *)
%o (Magma) [Binomial(n, 12): n in [12..100]]; // _Vincenzo Librandi_, Apr 22 2011
%o (PARI) for(n=12, 50, print1(binomial(n,12), ", ")) \\ _G. C. Greubel_, Aug 31 2017
%Y Cf. A000581, A010966, A010967, A001787, A242091.
%K nonn
%O 12,2
%A _N. J. A. Sloane_
%E Some formulas referring to other offsets corrected by _R. J. Mathar_, Jul 07 2009