The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010913 Pisot sequence E(3,17), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ). 2
 3, 17, 96, 542, 3060, 17276, 97536, 550664, 3108912, 17552144, 99095040, 559465952, 3158605632, 17832701888, 100679000064, 568408596608, 3209093579520, 18117744283904, 102288278544384, 577494182698496, 3260388539102208, 18407342869216256, 103923280137093120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305. D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016. Index entries for linear recurrences with constant coefficients, signature (6,-2). FORMULA Up to n=10^5, a(n) = 6a(n-1) - 2a(n-2). - Ralf Stephan, Sep 03 2013 Conjecture: If p[i]=fibonacci(2i+2) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010 Conjectures from Colin Barker, Jun 05 2016: (Start) a(n) = (((3-sqrt(7))^n*(-8+3*sqrt(7))+(3+sqrt(7))^n*(8+3*sqrt(7))))/(2*sqrt(7)). a(n) = 6*a(n-1)-2*a(n-2) for n>1. G.f.: (3-x) / (1-6*x+2*x^2). (End) Theorem: a(n) = 6 a(n - 1) - 2 a(n - 2) for n>=2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016 MATHEMATICA RecurrenceTable[{a[1] == 3, a[2] == 17, a[n] == Floor[a[n-1]^2/a[n-2]+1/2]}, a, {n, 40}] (* Vincenzo Librandi, Aug 09 2016 *) PROG (PARI) Vec((3-x)/(1-6*x+2*x^2) + O(x^25)) \\ Jinyuan Wang, Mar 10 2020~ CROSSREFS Sequence in context: A086842 A151330 A302871 * A142988 A056660 A155610 Adjacent sequences:  A010910 A010911 A010912 * A010914 A010915 A010916 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 05:26 EDT 2021. Contains 343030 sequences. (Running on oeis4.)