Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 19 2024 01:51:44
%S 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,
%T 3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,
%U 5,6,7,8,1,2,3,4,5,6,7,8,1
%N Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.
%C Partial sums are given by A130486(n)+n+1. - _Hieronymus Fischer_, Jun 08 2007
%C 1371742/11111111 = 0.123456781234567812345678... - _Eric Desbiaux_, Nov 03 2008
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).
%F a(n) = 1 + (n mod 8) - _Paolo P. Lava_, Nov 21 2006
%F From _Hieronymus Fischer_, Jun 08 2007: (Start)
%F a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
%F Also a(n) = A010877(n) + 1.
%F G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
%F Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)
%t PadRight[{},90,Range[8]] (* _Harvey P. Dale_, May 10 2022 *)
%o (Haskell)
%o a010887 = (+ 1) . flip mod 8
%o a010887_list = cycle [1..8]
%o -- _Reinhard Zumkeller_, Nov 09 2014, Mar 04 2014
%o (Python)
%o def A010887(n): return 1 + (n & 7) # _Chai Wah Wu_, May 25 2022
%Y Cf. A010872, A010873, A010874, A010875, A010876, A010878, A004526, A002264, A002265, A002266.
%Y Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - _Klaus Brockhaus_, May 01 2010
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_