Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 27 2021 21:53:41
%S 0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,
%T 7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,
%U 5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5
%N a(n) = n mod 9.
%C Periodic with period of length 9. The digital root of n (A010888) is a very similar sequence.
%C The rightmost digit in the base-9 representation of n. Also, the equivalent value of the two rightmost digits in the base-3 representation of n. - _Hieronymus Fischer_, Jun 11 2007
%H Ely Golden, <a href="/A010878/b010878.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1).
%F Complex representation: a(n)=(1/9)*(1-r^n)*sum{1<=k<9, k*product{1<=m<9,m<>k, (1-r^(n-m))}} where r=exp(2*pi/9*i) and i=sqrt(-1). Trigonometric representation: a(n)=(256/9)^2*(sin(n*pi/9))^2*sum{1<=k<9, k*product{1<=m<9,m<>k, (sin((n-m)*pi/9))^2}}. G.f.: g(x)=(sum{1<=k<9, k*x^k})/(1-x^9). Also: g(x)=x(8x^9-9x^8+1)/((1-x^9)(1-x)^2). - _Hieronymus Fischer_, May 31 2007
%F a(n) = n mod 3 + 3*(floor(n/3)mod 3) = A010872(n) + 3*A010872(A002264(n)). - _Hieronymus Fischer_, Jun 11 2007
%F a(n) = floor(12345678/999999999*10^(n+1)) mod 10. - _Hieronymus Fischer_, Jan 03 2013
%F a(n) = floor(1513361/96855122*9^(n+1)) mod 9. - _Hieronymus Fischer_, Jan 04 2013
%p A010878 := proc(n)
%p modp(n,9) ;
%p end proc:
%p seq(A010878(n),n=0..100) ; # _R. J. Mathar_, Sep 09 2015
%t Array[Mod[#, 9]&, 105, 0] (* _Jean-François Alcover_, Jan 30 2018 *)
%t PadRight[{},120,Range[0,8]] (* _Harvey P. Dale_, Dec 19 2018 *)
%o (Haskell)
%o a010878 = (`mod` 9)
%o a010878_list = cycle [0..8] -- _Reinhard Zumkeller_, Jan 09 2013
%o (PARI) a(n)=n%9 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y Partial sums: A130487. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_