login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 - x^k)^18.
2

%I #19 Feb 05 2018 15:20:11

%S 1,-18,135,-510,765,1242,-7038,8280,9180,-27710,3519,20196,50370,

%T -68850,-153765,244782,52785,-71010,-130525,-343620,517293,54978,

%U 498780,-390150,-1835865,1161270,896751,793730,-633420

%N Expansion of Product_{k>=1} (1 - x^k)^18.

%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

%H Seiichi Manyama, <a href="/A010824/b010824.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F a(0) = 1, a(n) = -(18/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017

%F G.f.: exp(-18*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_.