login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).
1528

%I #211 Oct 14 2024 12:27:23

%S 1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,

%T 0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,

%U 0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

%N From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).

%C When convolved with the partition numbers A000041 gives 1, 0, 0, 0, 0, ...

%C Also, number of different partitions of n into parts of -1 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004

%C The comment that "when convolved with the partition numbers gives [1, 0, 0, 0, ...]" is equivalent to row sums of triangle A145975 = [1, 0, 0, 0, ...]; where A145975 is a partition number convolution triangle. - _Gary W. Adamson_, Oct 25 2008

%C When convolved with n-th partial sums of A000041 = the binomial sequence starting (1, n, ...). Example: A010815 convolved with A014160 (partial sum operation applied thrice to the partition numbers) = (1, 3, 6, 10, ...). - _Gary W. Adamson_, Nov 11 2008

%C (A000012^(-n) * A000041) convolved with A010815 = n-th row of the inverse of Pascal's triangle, (as a vector, followed by zeros); where A000012^(-1) = the pairwise difference operator. Example: (A000012^(-4) * A000041) convolved with A010815 = (1, -4, 6, -4, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Nov 11 2008

%C Also sum of [product of (1-2/(hook lengths)^2)] over all partitions of n. - _Wouter Meeussen_, Sep 16 2010

%C Cayley (1895) begins article 387 with "Write for shortness sqrt(2k'K / pi) / [1-q^{2m-1}]^2 = G, ..." which is a convoluted way of writing G = [1-q^{2m}] = (1-q^2)(1-q^4)... - _Michael Somos_, Aug 01 2011

%C This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = x. - _Michael Somos_, Jan 21 2012

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Number 1 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - _Michael Somos_, May 04 2016

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.

%D B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.

%D T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.

%D A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].

%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.

%D B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.

%D A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.

%H Seiichi Manyama, <a href="/A010815/b010815.txt">Table of n, a(n) for n = 0..10000</a> (first 1002 terms from T. D. Noe)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.

%H George E. Andrews, <a href="http://dx.doi.org/10.1090/S0273-0979-07-01180-9">Euler's "De Partitio Numerorum"</a>, Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.

%H A. A. Bennett, <a href="http://www.jstor.org/stable/2300869">Problem 3553</a>, Amer. Math. Monthly, 39 (1932), 300.

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.

%H D. Bump, <a href="https://doi.org/10.1017/CBO9780511609572">Automorphic Forms and Representations</a>, Cambr. Univ. Press, 1997, p. 29.

%H S. Cooper and M. D. Hirschhorn, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00079-7">Results of Hurwitz type for three squares</a>, Discrete Math. 274 (2004), no. 1-3, 9-24. See P(q).

%H L. Euler, <a href="https://arxiv.org/abs/math/0411454">The expansion of the infinite product (1-x)(1-xx)(1-x^3)...</a>, arXiv:math/0411454 [math.HO], 2004.

%H L. Euler, <a href="http://math.dartmouth.edu/~euler/pages/E541.html">Evolutio producti infiniti (1-x)(1-xx)(1-x^3)...</a>

%H S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.

%H Fern Gossow, <a href="https://arxiv.org/abs/2410.05678">Lyndon-like cyclic sieving and Gauss congruence</a>, arXiv:2410.05678 [math.CO], 2024. See p. 26.

%H H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy)

%H H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440.

%H K. Harada, <a href="http://dx.doi.org/10.4171/090">"Moonshine" of Finite Groups</a>, European Math. Soc., 2010, p. 17.

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Janjic2/janjic53.html">A Generating Function for Numbers of Insets</a>, Journal of Integer Sequences, 17, 2014, #14.9.7.

%H Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>

%H S. C. Milne, <a href="http://dx.doi.org/10.1023/A:1014865816981">Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions and Schur functions</a>, Ramanujan J., 6 (2002), 7-149. (See (1.10).)

%H Tim Silverman, <a href="https://arxiv.org/abs/1612.08085">Counting Cliques in Finite Distant Graphs</a>, arXiv preprint arXiv:1612.08085 [math.CO], 2016.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DedekindEtaFunction.html">Dedekind Eta Function</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentagonalNumberTheorem.html">Pentagonal Number Theorem</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>

%H D. Zagier, <a href="http://dx.doi.org/10.1007/978-3-540-74119-0">Elliptic modular forms and their applications</a> in "The 1-2-3 of modular forms", Springer-Verlag, 2008.

%H Robert M. Ziff, <a href="http://dx.doi.org/10.1088/0305-4470/28/5/013">On Cardy's formula for the critical crossing probability in 2d percolation</a>, J. Phys. A. 28, 1249-1255 (1995).

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F a(n) = (-1)^m if n is of the form m(3m+-1)/2; otherwise a(n)=0. The values of n such that |a(n)|=1 are the generalized pentagonal numbers, A001318. The values of n such that a(n)=0 is A090864.

%F Expansion of the Dedekind eta function without the q^(1/24) factor in powers of q.

%F Euler transform of period 1 sequence [ -1, -1, -1, ...].

%F G.f.: (q; q)_{infinity} = Product_{k >= 1} (1-q^k) = Sum_{n=-oo..oo} (-1)^n*q^(n*(3n+1)/2). The first notation is a q-Pochhammer symbol.

%F Expansion of f(-x) := f(-x, -x^2) in powers of x. A special case of Ramanujan's general theta function; see Berndt reference. - _Michael Somos_, Apr 08 2003

%F a(n) = A067661(n) - A067659(n). - _Jon Perry_, Jun 17 2003

%F Expansion of f(x^5, x^7) - x * f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function. - _Michael Somos_, Jan 21 2012

%F G.f.: q^(-1/24) * eta(t), where q = exp(2 Pi i t) and eta is the Dedekind eta function.

%F G.f.: 1 - x - x^2(1-x) - x^3(1-x)(1-x^2) - ... - _Jon Perry_, Aug 07 2004

%F Given g.f. A(x), then B(q) = q * A(q^3)^8 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 + 16*u*w^2. - _Michael Somos_, May 02 2005

%F Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(x^q), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^9*u3*u6^3 - u2^9*u3^4 + 9*u1^4*u2*u6^8. - _Michael Somos_, May 02 2005

%F a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 5 or 7 (mod 12), b(p^2e) = +1 if p == 1 or 11 (mod 12) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0. - _Michael Somos_, May 08 2005

%F Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^16*w^8 - v^24 + 16*u^8*w^16. - _Michael Somos_, May 08 2005

%F a(n) = (-1)^n * A121373(n). a(25*n + 1) = -a(n). a(5*n + 3) = a(5*n + 4) = 0. a(5*n) = A113681(n). a(5*n + 2) = - A116915(n). - _Michael Somos_, Feb 26 2006

%F G.f.: 1 + Sum_{k>0} (-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - _Michael Somos_, Aug 18 2006

%F a(n) = -(1/n)*Sum_{k=1..n} sigma(k)*a(n-k). - _Vladeta Jovovic_, Aug 28 2002

%F G.f.: A(x) = 1 - x/G(0); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 25 2012

%F Expansion of f(-x^2) * chi(-x) = psi(-x) * chi(-x^2) = psi(x) * chi(-x)^2 = f(-x^2)^2 / psi(x) = phi(-x) / chi(-x) = phi(-x^2) / chi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - _Michael Somos_, Nov 16 2015

%F G.f.: exp( Sum_{n>=1} -sigma(n)*x^n/n ). - _Seiichi Manyama_, Mar 04 2017

%F G.f.: Sum_{n >= 0} x^(n*(2*n-1))*(2*x^(2*n) - 1)/Product_{k = 1..2*n} 1 - x^k. - _Peter Bala_, Feb 02 2021

%F The g.f. A(x) satisfies A(x^2) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k >= n+1} 1 - x^k = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + + - - .... - _Peter Bala_, Feb 12 2021

%e G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...

%e G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...

%e From _Seiichi Manyama_, Mar 04 2017: (Start)

%e G.f.

%e = 1 + (-x - 3*x^2/2 - 4*x^3/3 - 7*x^4/4 - 6*x^5/5 - ...)

%e + 1/2 * (x^2 + 3*x^3 + 59*x^4/12 + 15*x^5/2 + ...)

%e + 1/6 * (-x^3 - 9*x^4/2 - 43*x^5/4 - ...)

%e + 1/24 * (x^4 + 6*x^5 + ...)

%e + 1/120 * (-x^5 - ...)

%e + ...

%e = 1 - x - x^2 + x^5 + .... (End)

%p A010815 := mul((1-x^m), m=1..100);

%p A010815 := proc(n) local x,m;

%p product(1-x^m,m=1..n) ;

%p expand(%) ;

%p coeff(%,x,n) ;

%p end proc: # _R. J. Mathar_, Jun 18 2016

%p A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);

%p (-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # _Peter Luschny_, Oct 02 2022

%t a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* _Michael Somos_, Nov 15 2011 *)

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* _Michael Somos_, Nov 15 2011 *)

%t CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]

%t (* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* _Wouter Meeussen_, Sep 16 2010 *)

%t CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* _Jean-François Alcover_, Dec 04 2013 *)

%t a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* _Michael Somos_, Jun 04 2015 *)

%t nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, May 04 2018 *)

%t Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* _Vaclav Kotesovec_, Jul 09 2020 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* _Michael Somos_, Jun 05 2002 */

%o (PARI) {a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* _Michael Somos_, Nov 19 2011 */

%o (PARI) {a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* _Michael Somos_, Feb 26 2006 */

%o (PARI) {a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* _Michael Somos_, Feb 26 2006 */

%o (PARI) {a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* _Michael Somos_, Aug 18 2006 */

%o (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ _Altug Alkan_, Mar 21 2018

%o (Magma) Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // _Vincenzo Librandi_, Jan 15 2017

%o (Julia) # DedekindEta is defined in A000594.

%o A010815List(len) = DedekindEta(len, 1)

%o A010815List(93) |> println # _Peter Luschny_, Mar 09 2018

%o (Python)

%o from math import isqrt

%o def A010815(n):

%o m = isqrt(24*n+1)

%o return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # _Chai Wah Wu_, Sep 08 2021

%o (Julia)

%o function A010815(n)

%o r = 24 * n + 1

%o m = isqrt(r)

%o m * m != r && return 0

%o iseven(div(m + m % 6, 6)) ? 1 : -1

%o end # _Peter Luschny_, Sep 09 2021

%Y Cf. A000041, A001318 (characteristic function), A000326, A080995.

%Y Cf. A067659, A067661.

%Y Cf. A145975, A002865, A014160.

%Y Cf. also A170925, A143374, A194087, A242168, A258232, A143062, A203568.

%K sign,nice,easy

%O 0,1

%A _N. J. A. Sloane_

%E Additional comments from _Michael Somos_, Jun 05 2002