login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

13th powers: a(n) = n^13.
11

%I #42 Sep 08 2022 08:44:37

%S 0,1,8192,1594323,67108864,1220703125,13060694016,96889010407,

%T 549755813888,2541865828329,10000000000000,34522712143931,

%U 106993205379072,302875106592253,793714773254144,1946195068359375,4503599627370496,9904578032905937,20822964865671168

%N 13th powers: a(n) = n^13.

%C a(n) mod 10 = n mod 10. - _Reinhard Zumkeller_, Dec 06 2004

%C Totally multiplicative sequence with a(p) = p^13 for primes p. Multiplicative sequence with a(p^e) = p^(13*e). - _Jaroslav Krizek_, Nov 01 2009

%H Vincenzo Librandi, <a href="/A010801/b010801.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).

%F G.f.: x*(x^12 + 8178*x^11 + 1479726*x^10 + 45533450*x^9 + 423281535*x^8 + 1505621508*x^7 + 2275172004*x^6 + 1505621508*x^5 + 423281535*x^4 + 45533450*x^3 + 1479726*x^2 + 8178*x + 1) / (x - 1)^14. - _Colin Barker_, Sep 25 2014

%F From _Amiram Eldar_, Oct 08 2020: (Start)

%F Sum_{n>=1} 1/a(n) = zeta(13) (A013671).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 4095*zeta(13)/4096. (End)

%t Range[0,30]^13 (* _Vladimir Joseph Stephan Orlovsky_, Mar 14 2011 *)

%o (Magma) [n^13: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011

%o (PARI) a(n)=n^13 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A000290, A000578, A000583, A000584, A013671.

%K nonn,easy,mult

%O 0,3

%A _N. J. A. Sloane_