login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with distinct decimal digits.
86

%I #66 Feb 07 2024 01:16:17

%S 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,

%T 28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,

%U 53,54,56,57,58,59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,102,103,104,105,106,107,108,109,120

%N Numbers with distinct decimal digits.

%C More than the usual number of terms are displayed in order to show the difference from some closely related sequences.

%C Also: a(1) = 0; a(n) = Min{x integer | x > a(n-1) and all digits to base 10 are distinct}.

%C This sequence is finite: a(8877691) = 9876543210 is the last term; a(8877690) = 9876543201. The largest gap between two consecutive terms before a(249999) = 2409653 is 104691, as a(175289) = 1098765, a(175290) = 1203456. - _Reinhard Zumkeller_, Jun 23 2001

%C Complement of A109303. - _David Wasserman_, May 21 2008

%C For the analogs in other bases b, search for "xenodromes." A001339(b-1) is the number of base b xenodromes for b >= 2. - _Rick L. Shepherd_, Feb 16 2013

%C A073531 gives the number of positive n-digit numbers in this sequence. Note that it does not count 0. - _T. D. Noe_, Jul 09 2013

%C Can be seen as irregular table whose n-th row holds the n-digit terms; length of row n is then A073531(n) = 9*9!/(10-n)! except for n = 1 where we have 10 terms, unless 0 is considered to belong to a row 0. - _M. F. Hasler_, Dec 10 2018

%H Reinhard Zumkeller, <a href="/A010784/b010784.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Digit.html">Digit</a>

%F A178788(a(n)) = 1; A178787(a(n)) = n; A043537(a(n)) = A055642(a(n)). - _Reinhard Zumkeller_, Jun 30 2010

%F A107846(a(n)) = 0. - _Reinhard Zumkeller_, Jul 09 2013

%t Select[Range[0,100], Max[DigitCount[#]] == 1 &] (* _Harvey P. Dale_, Apr 04 2013 *)

%o (Haskell)

%o a010784 n = a010784_list !! (n-1)

%o a010784_list = filter ((== 1) . a178788) [1..]

%o -- _Reinhard Zumkeller_, Sep 29 2011

%o (PARI) is(n)=my(v=vecsort(digits(n)));v==vecsort(v,,8) \\ _Charles R Greathouse IV_, Sep 17 2012

%o (PARI) select( is(n)=!n||#Set(digits(n))==logint(n,10)+1, [0..120]) \\ _M. F. Hasler_, Dec 10 2018

%o (PARI) apply( A010784_row(n,L=List(if(n>1,[])))={forvec(d=vector(n,i,[0,9]),forperm(d,p,p[1]&&listput(L,fromdigits(Vec(p)))),2);Set(L)}, [1..2]) \\ A010784_row(n) returns all terms with n digits. - _M. F. Hasler_, Dec 10 2018

%o (Python)

%o A010784_list = [n for n in range(10**6) if len(set(str(n))) == len(str(n))] # _Chai Wah Wu_, Oct 13 2019

%o (Python) # alternate for generating full sequence

%o from itertools import permutations

%o afull = [0] + [int("".join(p)) for d in range(1, 11) for p in permutations("0123456789", d) if p[0] != "0"]

%o print(afull[:100]) # _Michael S. Branicky_, Aug 04 2022

%o (Scala) def hasDistinctDigits(n: Int): Boolean = {

%o val numerStr = n.toString

%o val digitSet = numerStr.split("").toSet

%o numerStr.length == digitSet.size

%o }

%o (0 to 99).filter(hasDistinctDigits) // _Alonso del Arte_, Jan 09 2020

%Y Subsequence of A043096.

%Y Cf. A109303, A029740 (odds), A029741 (evens), A029743 (primes), A001339.

%K nonn,base,fini

%O 1,3

%A _N. J. A. Sloane_

%E Offset changed to 1 and first comment adjusted by _Reinhard Zumkeller_, Jun 14 2010