login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum along upward diagonal of Pascal triangle from (but not including) halfway point.
3

%I #24 Feb 10 2022 09:00:50

%S 0,0,1,2,1,3,7,14,11,25,51,97,92,189,365,674,709,1383,2587,4685,5270,

%T 9955,18228,32551,38403,70954,127921,226007,276408,502415,895103,

%U 1568062,1972851,3540913,6249235,10871723,13996408,24868131,43551364,75326395,98847749

%N Sum along upward diagonal of Pascal triangle from (but not including) halfway point.

%H Seiichi Manyama, <a href="/A010758/b010758.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{k = 1 + floor(n/4)..floor(n/2)} binomial(n - k, k). - _Sean A. Irvine_, Jun 09 2018

%o (PARI) a(n) = sum(k=n\4+1, n\2, binomial(n-k, k)); \\ _Seiichi Manyama_, Feb 10 2022

%Y Cf. A000045, A007318, A010754, A010755, A010759.

%K nonn

%O 0,4

%A _R. K. Guy_