Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 24 2022 16:40:07
%S 1,2,1,1,-2,3,-7,22,-71,231,-794,2945,-11679,48770,-212823,969221,
%T -4605674,22802431,-117322423,625743878,-3452893503,19684083947,
%U -115787084242,701935339725,-4380330298815,28105726916034,-185229395693615,1252696143653513
%N Shifts 2 places left under inverse binomial transform.
%H Alois P. Heinz, <a href="/A010739/b010739.txt">Table of n, a(n) for n = 0..650</a>
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f. A(x) satisfies: A(x) = 1 + 2*x + x^2*A(x/(1 + x))/(1 + x). - _Ilya Gutkovskiy_, Feb 02 2022
%p a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
%p add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-2)
%p end:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Feb 02 2022
%t a[n_] := a[n] = Function[m, If[m<0, 2^n,
%t Sum[a[m-j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]][n-2];
%t Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jul 24 2022, after _Alois P. Heinz_ *)
%Y Cf. A010741, A010743, A010745, A010747.
%K sign,eigen
%O 0,2
%A _N. J. A. Sloane_, _Jonas Wallgren_