Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 15 2022 14:01:03
%S 3,12,120,1368,18300,268728,4179852,67767744,1133826324,19443072084,
%T 340085761968,6046276240668,108970501777080,1986820814551056,
%U 36587507853481908,679619087721892176,12720247240214281860,239685390231729125004,4543441582487318876664
%N High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on cubic lattice with nearest-neighbor interaction J at temperature T.
%H M. E. Fisher and D. S. Gaunt, <a href="http://dx.doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev., 133 (1964), A224-A239. See Table II for correct a(1)-a(6) but incorrect a(7).
%H M. E. Fisher and M. F. Sykes, <a href="https://doi.org/10.1016/0031-8914(62)90081-2">Antiferromagnetic susceptibilities of the simple cubic and body-centered cubic Ising lattices</a>, Physica, 28 (1962), 939-956.
%F Sum_{n>=1} a(n) * v^(2*n-1) = v*q/2 + (1-v^2) * f'(v) / f(v), where f(v) = Sum_{n>=0} A001393(n) * v^(2*n) and q = 6 is the number of nearest neighbors. - _Andrey Zabolotskiy_, Feb 14 2022
%Y Cf. A001393, A002908, A007239, A010572-A010574, A047711, A047712.
%K nonn,nice
%O 1,1
%A _N. J. A. Sloane_
%E New name from _Andrey Zabolotskiy_, Jan 14 2019
%E a(7) corrected and more terms added by _Andrey Zabolotskiy_, Feb 14 2022