

A010547


Decimal expansion of square root of 96.


5



9, 7, 9, 7, 9, 5, 8, 9, 7, 1, 1, 3, 2, 7, 1, 2, 3, 9, 2, 7, 8, 9, 1, 3, 6, 2, 9, 8, 8, 2, 3, 5, 6, 5, 5, 6, 7, 8, 6, 3, 7, 8, 9, 9, 2, 2, 6, 2, 6, 6, 8, 0, 5, 1, 3, 7, 3, 0, 7, 7, 0, 2, 6, 9, 0, 0, 3, 8, 4, 1, 5, 0, 9, 8, 2, 9, 2, 6, 0, 1, 0, 6, 1, 5, 9, 4, 3, 7, 7, 3, 2, 4, 1, 8, 5, 6, 0, 9, 3, 9, 2, 7, 4, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Continued fraction expansion is 9 followed by {1, 3, 1, 18} repeated.  Harry J. Smith, Jun 11 2009
This differs only by offset from 2*(6^(1/2))/5 = 0.9797958971132712392789... as used in Theorem 5, equation 1.8, p.4 of Cao.  Jonathan Vos Post, Apr 29 2010


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000
Zhenwei Cao, Alexander Elgart, On efficiency of Hamiltonianbased quantum computation for lowrank matrices, April 27, 2010. [From Jonathan Vos Post, Apr 29 2010]


EXAMPLE

9.797958971132712392789136298823565567863789922626680513730770269003841...  Harry J. Smith, Jun 11 2009


MATHEMATICA

RealDigits[N[96^(1/2), 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)


PROG

(PARI) { default(realprecision, 20080); x=sqrt(96); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b010547.txt", n, " ", d)); } \\ Harry J. Smith, Jun 11 2009


CROSSREFS

Cf. A010167 Continued fraction.  Harry J. Smith, Jun 11 2009
Sequence in context: A243263 A244691 A121911 * A011405 A268228 A131724
Adjacent sequences: A010544 A010545 A010546 * A010548 A010549 A010550


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane


EXTENSIONS

Final digits of sequence corrected using the bfile.  N. J. A. Sloane, Aug 30 2009


STATUS

approved



