Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 15 2023 01:16:08
%S 9,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,
%T 18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,
%U 1,18,1,18,1,18,1,18,1,18,1
%N Continued fraction for sqrt(99).
%H Harry J. Smith, <a href="/A010170/b010170.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F a(n+1) = 18^n mod 19, for all n >= 0. - _M. F. Hasler_, Mar 10 2011
%F From _Amiram Eldar_, Nov 14 2023: (Start)
%F Multiplicative with a(2^e) = 18, and a(p^e) = 1 for an odd prime p.
%F Dirichlet g.f.: zeta(s) * (1 + 17/2^s). (End)
%e 9.9498743710661995473447982... = 9 + 1/(1 + 1/(18 + 1/(1 + 1/(18 + ...)))). - _Harry J. Smith_, Jun 12 2009
%t ContinuedFraction[Sqrt[99],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2011 *)
%t PadRight[{9},120,{18,1}] (* _Harvey P. Dale_, Aug 30 2021 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 27000); x=contfrac(sqrt(99)); for (n=0, 20000, write("b010170.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 12 2009
%Y Cf. A010550 (decimal expansion).
%K nonn,cofr,easy,mult
%O 0,1
%A _N. J. A. Sloane_