Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Dec 27 2023 00:18:56
%S 9,3,1,1,1,8,1,1,1,3,18,3,1,1,1,8,1,1,1,3,18,3,1,1,1,8,1,1,1,3,18,3,1,
%T 1,1,8,1,1,1,3,18,3,1,1,1,8,1,1,1,3,18,3,1,1,1,8,1,1,1,3,18,3,1,1,1,8,
%U 1,1,1,3,18,3,1,1,1,8,1,1
%N Continued fraction for sqrt(86).
%H Harry J. Smith, <a href="/A010159/b010159.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1).
%e 9.273618495495703752516416073... = 9 + 1/(3 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 10 2009
%t ContinuedFraction[Sqrt[86],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 09 2011 *)
%t PadRight[{9},120,{18,3,1,1,1,8,1,1,1,3}] (* _Harvey P. Dale_, Dec 13 2018 *)
%o (Python)
%o from sympy import sqrt
%o from sympy.ntheory.continued_fraction import continued_fraction_iterator
%o def aupton(terms):
%o gen = continued_fraction_iterator(sqrt(86))
%o return [next(gen) for i in range(terms)]
%o print(aupton(78)) # _Michael S. Branicky_, Sep 03 2021
%Y Cf. A010537 (decimal expansion). - _Harry J. Smith_, Jun 10 2009
%K nonn,cofr
%O 0,1
%A _N. J. A. Sloane_