login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for sqrt(61).
5

%I #28 Dec 27 2023 00:09:59

%S 7,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,4,1,

%T 14,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,4,1,

%U 14,1,4,3,1,2,2,1,3,4,1,14

%N Continued fraction for sqrt(61).

%H Harry J. Smith, <a href="/A010145/b010145.txt">Table of n, a(n) for n = 0..20000</a>

%H A. J. van der Poorten, <a href="https://web.archive.org/web/*/http://www-centre.mpce.mq.edu.au/alfpapers/a075.pdf">An introduction to continued fractions</a>, Unpublished.

%H A. J. van der Poorten, <a href="/A007400/a007400_4.pdf">An introduction to continued fractions</a>, Unpublished [Cached copy]

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%e 7.810249675906654394129722735... = 7 + 1/(1 + 1/(4 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 07 2009

%t ContinuedFraction[Sqrt[61],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 08 2011 *)

%t PadRight[{7},120,{14,1,4,3,1,2,2,1,3,4,1}] (* _Harvey P. Dale_, Mar 27 2013 *)

%o (PARI) { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(61)); for (n=0, 20000, write("b010145.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 07 2009

%Y Cf. A010514 Decimal expansion. - _Harry J. Smith_, Jun 07 2009

%K nonn,cofr

%O 0,1

%A _N. J. A. Sloane_