login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010144
Continued fraction for sqrt(59).
3
7, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 7, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^(s-1)). (End)
EXAMPLE
7.681145747868608175769687021... = 7 + 1/(1 + 1/(2 + 1/(7 + 1/(2 + ...)))). - Harry J. Smith, Jun 07 2009
MATHEMATICA
ContinuedFraction[Sqrt[59], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
PadRight[{7}, 120, {14, 1, 2, 7, 2, 1}] (* Harvey P. Dale, May 15 2017 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(59)); for (n=0, 20000, write("b010144.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
CROSSREFS
Cf. A010512 (decimal expansion).
Sequence in context: A238273 A155773 A215670 * A195409 A318353 A354639
KEYWORD
nonn,cofr,easy,mult
STATUS
approved