Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 14 2020 20:34:50
%S 1,0,680085,1405509000,1550251328625,1046619143765400,
%T 473991729034823125,153151413728678046000,36909490731397295108625,
%U 6861064221248350742706000,1009876431641919171349467525
%N Weight distribution of d=4 Hamming code of length 255.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.
%H Georg Fischer, <a href="/A010095/b010095.txt">Table of n, a(n) for n = 0..126</a>
%H <a href="/wiki/List_of_weight_distributions">List of weight distributions</a>
%F a(n) = A010089(2n). - _Georg Fischer_, Jul 14 2020
%t m:=255; RecurrenceTable[{a[n]==(Binomial[m, n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
%t a[0]==1, a[1]==0}, a, {n, 0, m}][[1;;m-2;;2]] (* _Georg Fischer_, Jul 14 2020; from the reference p. 129 *)
%Y Cf. A010089.
%K nonn,fini,full
%O 0,3
%A _N. J. A. Sloane_.