Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 May 07 2024 06:02:58
%S 1,26,98,218,386,602,866,1178,1538,1946,2402,2906,3458,4058,4706,5402,
%T 6146,6938,7778,8666,9602,10586,11618,12698,13826,15002,16226,17498,
%U 18818,20186,21602,23066,24578,26138,27746,29402,31106,32858,34658,36506,38402,40346
%N a(0) = 1, a(n) = 24*n^2 + 2 for n>0.
%C Number of points of L_infinity norm n in the simple cubic lattice Z^3. - _N. J. A. Sloane_, Apr 15 2008
%C Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
%C First bisection of A005897. After 1, all terms are in A000408. - _Bruno Berselli_, Feb 06 2012
%H Bruno Berselli, <a href="/A010014/b010014.txt">Table of n, a(n) for n = 0..1000</a>
%H X. Acloque <a href="http://www.fortunecity.fr/polynexus/index.html">Polynexus Numbers and other mathematical wonders</a> [broken link]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
%F G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - _Bruno Berselli_, Feb 06 2012
%F a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - _Bruno Berselli_, Feb 06 2012
%F E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - _Gopinath A. R._, Feb 14 2012
%F a(n) = A005899(n) + A195322(n), n > 0. - _R. J. Cano_, Sep 29 2015
%F Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - _R. J. Mathar_, May 07 2024
%F a(n) = 2*A158480(n), n>0. - _R. J. Mathar_, May 07 2024
%F a(n) = A069190(n)+A069190(n+1). - _R. J. Mathar_, May 07 2024
%t Join[{1}, 24 Range[41]^2 + 2] (* _Bruno Berselli_, Feb 06 2012 *)
%o (PARI) a(n) = if (n==0, 1, 24*n^2 + 2);
%o vector(40, n, a(n-1)) \\ _Altug Alkan_, Sep 29 2015
%Y Cf. A206399.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_
%E More terms from Xavier Acloque, Oct 20 2003