%I
%S 1,1,15,9,19,33,41,6,54,119,74,165,0,191,92,286,150,214,389,297,168,
%T 439,432,386,52,543,99,416,536,902,427,225,497,194,1168,850,806,399,
%U 955,665,519,1648,597,1378,547,786,1516,978,1169,53,988
%N Coefficients in expansion of Euler's constant gamma as Sum_{n>=1} a(n)/(n*n!*(n+1)!), as found by greedy algorithm.
%F a(n) = floor(n! * n * (n+1)! * b(n1))) where b(0) = gamma and b(n) = b(n1)  a(n) / (n! * n *(n+1)!).  _Sean A. Irvine_, May 01 2018
%o (Macsyma) Ouang(x,n) := block([ ans : [ ] ], for k through n do (push(floor(multthru(k!*k*(k+1)!,x)),ans), x: xans[ 1 ]/(k!*k*(k+1)!)),reverse(ans)); Ouang(%gamma,25);
%Y Cf. A001620.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, _Bill Gosper_
%E More terms from _Sean A. Irvine_, May 01 2018
