login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. tan(x)/cos(sin(x)), odd powers only.
1

%I #20 Feb 15 2018 15:38:13

%S 1,5,41,517,12145,582405,42317081,3759817029,398983432289,

%T 52888501801733,8949712747169929,1870731232726437509,

%U 461089997723562652881,130976488217164121240069,42778996119131902973150329,16067412656453434757397261253,6888568425518076742074506305217

%N Expansion of e.g.f. tan(x)/cos(sin(x)), odd powers only.

%H G. C. Greubel, <a href="/A009755/b009755.txt">Table of n, a(n) for n = 0..240</a>

%p a:= n-> (t-> t!*coeff(series(tan(x)/cos(sin(x)), x, t+1), x, t))(2*n+1):

%p seq(a(n), n=0..17); # _Alois P. Heinz_, Feb 15 2018

%t With[{nn=30},Take[CoefficientList[Series[Tan[x]/Cos[Sin[x]],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* _Harvey P. Dale_, Mar 20 2015 *)

%o (PARI) x='x+O('x^50); v=Vec(serlaplace(tan(x)/cos(sin(x)))); vector((#v-1)\2 ,n,v[2*n-1]) \\ _G. C. Greubel_, Feb 12 2018

%K nonn

%O 0,2

%A _R. H. Hardin_

%E Extended and signs tested by _Olivier Gérard_, Mar 15 1997

%E One additional term from and prior Mathematica program replaced by _Harvey P. Dale_, Mar 20 2015