Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Aug 04 2024 01:26:20
%S 0,2,8,96,2176,79360,4245504,313155584,30460116992,3777576173568,
%T 581777702256640,108932957168730112,24370173276164456448,
%U 6419958484945407574016,1967044844910430876860416,693575525634287935244206080,278846808228005417477465964544,126799861926498005417315327279104
%N Expansion of e.g.f. tan(x)*x (even powers only).
%H G. C. Greubel, <a href="/A009752/b009752.txt">Table of n, a(n) for n = 0..240</a>
%H Bishal Deb and Alan D. Sokal, <a href="https://arxiv.org/abs/2212.07232">Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers</a>, arXiv:2212.07232 [math.CO], 2022. See p. 12.
%F a(n) = n 4^n |E_{2n-1}(1/2)+E_{2n-1}(1)| for n > 0; E_{n}(x) Euler polynomials. - _Peter Luschny_, Nov 25 2010
%F a(n) = (2*n)! * [x^(2*n)] tan(x)*x.
%F a(n) = 2*(2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - _Peter Luschny_, Jun 29 2012
%F E.g.f.: sqrt(x)*tan(sqrt(x))= sum(n>=0, a(n)*x^n/(2*n)! ) = x/T(0) where T(k)= 1 - 4*k^2 + x*(1 - 4*k^2)/T(k+1) ; (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Sep 19 2012
%F E.g.f.: -1 - x^(1/2)- Q(0),where Q(k) = 4*k -1 - x/( 1 - x/ (4*k+1 + x/( 1 + x/Q(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 24 2013
%F From _Peter Luschny_, Jun 09 2016: (Start)
%F a(n) = (4^n-16^n)*Sum_{k=0..2*n} (-1)^(n-k)*Stirling2(2*n, k)*k!/(k+1).
%F 2*a(n)/4^n = A110501(n) for n>=1.
%F a(n) / 2^n = A117513(n) for n>=1. (End)
%F a(n) ~ (4*(4^(2*n)-2^(2*n)))*Pi*(n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). - _Peter Luschny_, Jan 16 2017
%F a(n) = (-1)^n*4*n*PolyLog(1 - 2*n, -i). - _Peter Luschny_, Aug 17 2021
%F a(n) = 2*A024255(n). - _Alois P. Heinz_, Aug 17 2021
%e 2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ...
%p a := n -> 4^n*n*`if`(n=0,0,abs(euler(2*n-1, 0))): # _Peter Luschny_, Jun 09 2016
%t nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* _T. D. Noe_, Sep 20 2012 *)
%t Table[(-1)^n 4 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* _Peter Luschny_, Aug 17 2021 *)
%o (PARI) my(x='x+O('x^50)); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ _G. C. Greubel_, Feb 12 2018
%Y A diagonal of A232933.
%Y Cf. A009725, A024255, A065619, A099028, A110501, A117513.
%K nonn
%O 0,2
%A _R. H. Hardin_
%E Extended and signs tested by _Olivier Gérard_, Mar 15 1997