OFFSET
0,2
FORMULA
a(n)=4*sum(m=0..n-1/2, ((sum(j=1..2*m+1, j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1,j)))*sum(j=4*m+2..2*n, binomial(j-1,4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n,j)))/(2*m+1)!). [Vladimir Kruchinin, Jun 21 2011]
a(n) ~ (2*n)! * 2 * sqrt(2) / ((2+Pi) * sqrt(Pi) * arctan(sqrt(Pi/2))^(2*n+1)). - Vaclav Kotesovec, Jan 24 2015
EXAMPLE
tan(tan(x)*tan(x))=2/2!*x^2+16/4!*x^4+512/6!*x^6+34816/8!*x^8...
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Tan[Tan[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Maxima)
a(n):=4*sum(((sum(j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1, j), j, 1, 2*m+1))*sum(binomial(j-1, 4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n, j), j, 4*m+2, 2*n))/(2*m+1)!, m, 0, n-1/2); [Vladimir Kruchinin, Jun 21 2011]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested Mar 15 1997 by Olivier Gérard.
STATUS
approved