login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009710
E.g.f. tan(tan(x)^2) (even powers only).
2
0, 2, 16, 512, 34816, 3821312, 618121216, 138682959872, 41171702972416, 15610723195092992, 7357121913006063616, 4217775794187229724672, 2889975739296119171055616, 2332177121915783600628826112
OFFSET
0,2
FORMULA
a(n)=4*sum(m=0..n-1/2, ((sum(j=1..2*m+1, j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1,j)))*sum(j=4*m+2..2*n, binomial(j-1,4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n,j)))/(2*m+1)!). [Vladimir Kruchinin, Jun 21 2011]
a(n) ~ (2*n)! * 2 * sqrt(2) / ((2+Pi) * sqrt(Pi) * arctan(sqrt(Pi/2))^(2*n+1)). - Vaclav Kotesovec, Jan 24 2015
EXAMPLE
tan(tan(x)*tan(x))=2/2!*x^2+16/4!*x^4+512/6!*x^6+34816/8!*x^8...
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Tan[Tan[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Maxima)
a(n):=4*sum(((sum(j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1, j), j, 1, 2*m+1))*sum(binomial(j-1, 4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n, j), j, 4*m+2, 2*n))/(2*m+1)!, m, 0, n-1/2); [Vladimir Kruchinin, Jun 21 2011]
CROSSREFS
Sequence in context: A366513 A366517 A012389 * A012393 A189899 A189335
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested Mar 15 1997 by Olivier Gérard.
STATUS
approved