login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009692
Number of partitions of {1, 2, ..., 2n} into pairs whose differences are primes.
4
1, 0, 1, 3, 10, 40, 153, 921, 5144, 30717, 230748, 1766056, 14052445, 116580521, 897876519, 7657321097, 75743979608, 788733735080, 7569825650083, 75242386295617, 831978453306391, 9444103049405370, 120064355466770831, 1579842230380587833
OFFSET
0,4
EXAMPLE
a(3) = 3: {{1,6}, {2,4}, {3,5}}, {{1,4}, {2,5}, {3,6}}, {{1,3}, {2,5}, {4,6}}. - Alois P. Heinz, Nov 15 2016
MAPLE
b:= proc(s) option remember; `if`(s={}, 1, (j-> add(`if`(i<j
and isprime(j-i), b(s minus {i, j}), 0), i=s))(max(s)))
end:
a:= n-> b({$1..2*n}):
seq(a(n), n=0..12); # Alois P. Heinz, Nov 15 2016
MATHEMATICA
b[s_] := b[s] = If[s == {}, 1, Function[j, Sum[If[i < j && PrimeQ[j - i], b[s ~Complement~ {i, j}], 0], {i, s}]][Max[s]]];
a[n_] := b[Range[2n]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A000341.
Sequence in context: A099763 A318118 A149052 * A149053 A149054 A149055
KEYWORD
nonn,hard
EXTENSIONS
a(0), a(14)-a(18) from Alois P. Heinz, Nov 15 2016
a(19)-a(23) from Bert Dobbelaere, Feb 20 2020
STATUS
approved