|
|
A009541
|
|
Expansion of sin(x)*exp(sin(x)).
|
|
1
|
|
|
0, 1, 2, 2, -4, -24, -42, 104, 888, 1792, -8086, -68608, -115468, 1203840, 8863806, 5570816, -275344656, -1636425728, 2488177106, 86205304832, 369676840940, -2289265803264, -34139482063962, -73881736609792, 1691837365047912
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n)=sum(k=1..n, (1+(-1)^(n-k))*2^(-k)*sum(i=0..k/2, (-1)^((n+k)/2-i)*binomial(k,i)*(2*i-k)^n)/(k-1)!). - Vladimir Kruchinin, Apr 19 2011
a(n) = D^n(x*exp(x)) evaluated at x = 0, where D is the operator sqrt(1-x^2)*d/dx. Cf. A009623. - Peter Bala, Dec 06 2011
|
|
MATHEMATICA
|
With[{nn=30}, CoefficientList[Series[Sin[x]*Exp[Sin[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 09 2021 *)
|
|
PROG
|
(Maxima)
a(n):=sum((1+(-1)^(n-k))*2^(-k)*sum((-1)^((n+k)/2-i)*binomial(k, i)*(2*i-k)^n, i, 0, k/2)/(k-1)!, k, 1, n); /* Vladimir Kruchinin, Apr 19 2011 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|