OFFSET
0,2
FORMULA
sin(x sin x) = Sum a(n) x^(2n)/(2n)!. - N. J. A. Sloane, Aug 28 2012
a(n) = sum(k=0..n, binomial(2*n,2*k+1)*(4^(-k)*sum(i=0..k, (2*i-2*k-1)^(2*n-2*k-1)*binomial(2*k+1,i)*(-1)^(n-i+k)))). - Vladimir Kruchinin, Jun 28 2011
EXAMPLE
sin(sin(x)*x) = x^2-(1/6)*x^4-(19/120)*x^6+(419/5040)*x^8-(3527/362880)*x^10-(187001/39916800)*x^12+... - N. J. A. Sloane, Aug 28 2012
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Sin[Sin[x]*x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 28 2012 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n, 2*k+1)*(4^(-k)*sum((2*i-2*k-1)^(2*n-2*k-1)*binomial(2*k+1, i)*(-1)^(n-i+k), i, 0, k)), k, 0, n); /* Vladimir Kruchinin, Jun 28 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved