login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009484
From the expansion of sin(sin(x)*x).
1
0, 2, -4, -114, 3352, -35270, -2244012, 198654470, -8021832016, -150983244558, 67525484385580, -7526828271926018, 368068475511786696, 48206694242241834026, -16586068178557581107068, 2563355081796258270543990, -153878422314204916436611232
OFFSET
0,2
FORMULA
sin(x sin x) = Sum a(n) x^(2n)/(2n)!. - N. J. A. Sloane, Aug 28 2012
a(n) = sum(k=0..n, binomial(2*n,2*k+1)*(4^(-k)*sum(i=0..k, (2*i-2*k-1)^(2*n-2*k-1)*binomial(2*k+1,i)*(-1)^(n-i+k)))). - Vladimir Kruchinin, Jun 28 2011
EXAMPLE
sin(sin(x)*x) = x^2-(1/6)*x^4-(19/120)*x^6+(419/5040)*x^8-(3527/362880)*x^10-(187001/39916800)*x^12+... - N. J. A. Sloane, Aug 28 2012
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Sin[Sin[x]*x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 28 2012 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n, 2*k+1)*(4^(-k)*sum((2*i-2*k-1)^(2*n-2*k-1)*binomial(2*k+1, i)*(-1)^(n-i+k), i, 0, k)), k, 0, n); /* Vladimir Kruchinin, Jun 28 2011 */
CROSSREFS
Sequence in context: A289343 A018463 A132497 * A006314 A326204 A259381
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved