login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. log(1+x)/cosh(tan(x)).
3

%I #21 Sep 06 2023 04:32:03

%S 0,1,-1,-1,0,-11,15,27,-504,11817,-94185,1226455,-12442056,155936221,

%T -1995562569,27870901107,-423463160400,6793396567633,-117302680146033,

%U 2130615128588591,-40960288523646320,827190717641773765

%N Expansion of e.g.f. log(1+x)/cosh(tan(x)).

%H G. C. Greubel, <a href="/A009433/b009433.txt">Table of n, a(n) for n = 0..448</a>

%F a(n) ~ (n-1)! * (-1)^(n+1) / cosh(tan(1)). - _Vaclav Kotesovec_, Jan 23 2015

%t With[{m=25}, CoefficientList[Series[Log[1+x]/Cosh[Tan[x]], {x,0,m}], x]*Range[0, m]!] (* modified by _G. C. Greubel_, Sep 06 2023 *)

%t CoefficientList[Series[Log[1 + x]*Sech[Tan[x]], {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 23 2015 *)

%o (Magma)

%o R<x>:=PowerSeriesRing(Rationals(), 30);

%o [0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Tan(x)) ))); // _G. C. Greubel_, Sep 06 2023

%o (SageMath)

%o def A009433_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( log(1+x)/cosh(tan(x)) ).egf_to_ogf().list()

%o A009433_list(40) # _G. C. Greubel_, Sep 06 2023

%o (PARI) my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(tan(x))))) \\ _Joerg Arndt_, Sep 06 2023

%Y Cf. A009405 - A009420, A009422 - A009432, A009434 - A009439.

%K sign,easy

%O 0,6

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997