Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 May 25 2022 09:26:04
%S 1,2,4,-24,400,-5600,-103872,26975872,-3438685952,417995260416,
%T -51382607559680,5994623640856576,-454930757753597952,
%U -94991612229069430784,81515752167646959124480,-41079088828539119883878400,18870487103065970636941754368,-8553231336572387307575081566208
%N Expansion of e.g.f. exp(x*tanh(x)) (even powers only).
%H Vaclav Kotesovec, <a href="/A009273/b009273.txt">Table of n, a(n) for n = 0..240</a>
%F a(n) = Sum_(m=0..2*n, binomial(2*n,m)*Sum_(k=0..2*n-2*m, binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n-m,k+m))), n>0, a(0)=1. - _Vladimir Kruchinin_, Jun 06 2011
%t nmax = 20; Table[(CoefficientList[Series[E^(x*Tanh[x]), {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[k]], {k, 1, 2*nmax, 2}] (* _Vaclav Kotesovec_, May 24 2022 *)
%o (Maxima)
%o a(n):=sum(binomial(2*n,m)*sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n-m,k+m),k,0,2*n-2*m),m,0,2*n); /* _Vladimir Kruchinin_, Jun 06 2011 */
%Y Cf. A354245, A354399.
%K sign
%O 0,2
%A _R. H. Hardin_
%E Extended with signs by _Olivier Gérard_, Mar 15 1997
%E More terms from _Vaclav Kotesovec_, May 25 2022