|
|
A009269
|
|
Expansion of e.g.f. exp(tanh(x)*log(1+x)).
|
|
1
|
|
|
1, 0, 2, -3, 12, -70, 370, -2436, 20048, -175176, 1679368, -18271000, 216489416, -2751576048, 37874200208, -560956931640, 8845252164864, -148215651070272, 2635014886145472, -49474969983055872, 977864639612813440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
|
|
FORMULA
|
a(n) = Sum_{m=1..n} Sum_{i=0..n-2*m} Stirling1(i+m,m)*binomial(n,i+m)* Sum_{k=0..n-i-2*m} binomial(k+m-1,m-1)*(k+m)!*(-1)^(2*m+k)*2^(n-k-i-2*m)*Stirling2(n-i-m,k+m), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 01 2011
a(n) ~ n! * (-1)^n * n^(tanh(1)-1) / GAMMA(tanh(1)). - Vaclav Kotesovec, Jan 24 2015
|
|
MATHEMATICA
|
With[{nn=20}, CoefficientList[Series[Exp[Tanh[x]Log[1+x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 19 2014 *)
CoefficientList[Series[(1 + x)^Tanh[x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
|
|
PROG
|
(Maxima)
a(n):=sum(sum((stirling1(i+m, m)*binomial(n, i+m)*sum(binomial(k+m-1, m-1)*(k+m)!*(-1)^(2*m+k)*2^(n-k-i-2*m)*stirling2(n-i-m, k+m), k, 0, n-i-2*m)), i, 0, n-2*m), m, 1, n); /* Vladimir Kruchinin, Jun 01 2011 */
|
|
CROSSREFS
|
Sequence in context: A012911 A264726 A099805 * A012396 A013012 A009594
Adjacent sequences: A009266 A009267 A009268 * A009270 A009271 A009272
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
R. H. Hardin
|
|
EXTENSIONS
|
Extended with signs by Olivier Gérard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Jan 19 2014
|
|
STATUS
|
approved
|
|
|
|