This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009256 Expansion of e.g.f. exp(tan(x)^2) (even powers only). 0
 1, 2, 28, 872, 47248, 3907232, 454886848, 70597546112, 14042505449728, 3475021574246912, 1045247734061145088, 375054668796817221632, 158085597663328138006528, 77269840864693331267919872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = Sum_{k=1..n} (Sum_{j=2*k..2*n} binomial(j-1,2*k-1)*j!*2^(2*n-j)*(-1)^(n+k+j)*Stirling2(2*n,j)/k!). - Vladimir Kruchinin, Jun 06 2011 a(n) ~ (2*n)! * 2^(2*n+1/3) * exp(-2/3 + 4/(3*Pi^2) + (2^(4/3)*n^(1/3) + 3*n^(2/3)*(2*Pi)^(2/3))/Pi^(4/3)) / (sqrt(3) * n^(2/3) * Pi^(2*n+5/6)). - Vaclav Kotesovec, Jan 24 2015 MATHEMATICA Exp[ Tan[ x ]^2 ] (* Even Part *) nn = 20; Table[(CoefficientList[Series[E^Tan[x]^2, {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *) PROG (Maxima) a(n):=sum((sum(binomial(j-1, 2*k-1)*j!*2^(2*n-j)*(-1)^(n+k+j)*stirling2(2*n, j), j, 2*k, 2*n))/k!, k, 1, n); /* Vladimir Kruchinin, Jun 06 2011 */ CROSSREFS Sequence in context: A089836 A090249 A264411 * A012725 A264637 A012756 Adjacent sequences:  A009253 A009254 A009255 * A009257 A009258 A009259 KEYWORD nonn AUTHOR EXTENSIONS Extended and signs tested by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)