login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009256
Expansion of e.g.f. exp(tan(x)^2) (even powers only).
1
1, 2, 28, 872, 47248, 3907232, 454886848, 70597546112, 14042505449728, 3475021574246912, 1045247734061145088, 375054668796817221632, 158085597663328138006528, 77269840864693331267919872
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} (Sum_{j=2*k..2*n} binomial(j-1,2*k-1)*j!*2^(2*n-j)*(-1)^(n+k+j)*Stirling2(2*n,j)/k!). - Vladimir Kruchinin, Jun 06 2011
a(n) ~ (2*n)! * 2^(2*n+1/3) * exp(-2/3 + 4/(3*Pi^2) + (2^(4/3)*n^(1/3) + 3*n^(2/3)*(2*Pi)^(2/3))/Pi^(4/3)) / (sqrt(3) * n^(2/3) * Pi^(2*n+5/6)). - Vaclav Kotesovec, Jan 24 2015
MAPLE
S:= series(exp(tan(x)^2), x, 31):
seq(coeff(S, x, j)*j!, j=0..30, 2); # Robert Israel, Aug 07 2023
MATHEMATICA
Exp[ Tan[ x ]^2 ] (* Even Part *)
nn = 20; Table[(CoefficientList[Series[E^Tan[x]^2, {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Maxima)
a(n):=sum((sum(binomial(j-1, 2*k-1)*j!*2^(2*n-j)*(-1)^(n+k+j)*stirling2(2*n, j), j, 2*k, 2*n))/k!, k, 1, n); /* Vladimir Kruchinin, Jun 06 2011 */
CROSSREFS
Sequence in context: A090249 A264411 A370378 * A012725 A264637 A352251
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved