OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..528 (first 126 terms from Vincenzo Librandi)
Vaclav Kotesovec, Asymptotic solution of the equations using the Lambert W-function
FORMULA
a(n) = sum(k=1..n, ((sum(i=0..k, (-1)^i*(k-2*i)^n*binomial(k,i)))*2^(n-2*k))/k!), n>0, a(0)=1. - Vladimir Kruchinin, May 29 2011
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(cosh(r)*sinh(r)-n) * n^(n+1/2) / (sqrt(cosh(2*r) + 2*r*sinh(2*r)) * r^(n+1/2)), where r is the root of the equation r*(cosh(r)^2 + sinh(r)^2) = n.
(a(n)/n!)^(1/n) ~ 2*(exp(1/LambertW(4*n))/LambertW(4*n)).
(End)
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * 4^k * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
a(n-j)*binomial(n-1, j-1)*2^(j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2021
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Sinh[x]Cosh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 23 2011 *)
PROG
(Maxima)
a(n):=sum(((sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k))*2^(n-2*k))/k!, k, 1, n); /* Vladimir Kruchinin, May 29 2011 */
(PARI) x='x+O('x^66); /* that many terms */
Vec(serlaplace(exp(sinh(x)*cosh(x)))) /* show terms */ /* Joerg Arndt, May 29 2011 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
Corrected definition, Joerg Arndt, May 29 2011
STATUS
approved