login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009229
Expansion of e.g.f. exp(sinh(x)*cosh(x)).
4
1, 1, 1, 5, 17, 57, 337, 1661, 9697, 68529, 451809, 3570613, 29324913, 247557481, 2348275633, 22399292077, 229227939521, 2476740370529, 27378158737089, 323000223133285, 3912000089144273, 49350756905258905, 649905519911431953, 8776449485870211549
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..528 (first 126 terms from Vincenzo Librandi)
FORMULA
a(n) = sum(k=1..n, ((sum(i=0..k, (-1)^i*(k-2*i)^n*binomial(k,i)))*2^(n-2*k))/k!), n>0, a(0)=1. - Vladimir Kruchinin, May 29 2011
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(cosh(r)*sinh(r)-n) * n^(n+1/2) / (sqrt(cosh(2*r) + 2*r*sinh(2*r)) * r^(n+1/2)), where r is the root of the equation r*(cosh(r)^2 + sinh(r)^2) = n.
(a(n)/n!)^(1/n) ~ 2*(exp(1/LambertW(4*n))/LambertW(4*n)).
(End)
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * 4^k * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
a(n-j)*binomial(n-1, j-1)*2^(j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2021
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Sinh[x]Cosh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 23 2011 *)
PROG
(Maxima)
a(n):=sum(((sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k))*2^(n-2*k))/k!, k, 1, n); /* Vladimir Kruchinin, May 29 2011 */
(PARI) x='x+O('x^66); /* that many terms */
Vec(serlaplace(exp(sinh(x)*cosh(x)))) /* show terms */ /* Joerg Arndt, May 29 2011 */
CROSSREFS
Sequence in context: A289590 A054113 A146697 * A377927 A010914 A180502
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
Corrected definition, Joerg Arndt, May 29 2011
STATUS
approved