login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. cosh(log(1+tan(x))).
2

%I #19 Mar 08 2023 12:08:39

%S 1,0,1,-3,20,-120,976,-8568,88640,-1011840,12933376,-180964608,

%T 2767631360,-45799004160,816582578176,-15594628021248,317710534983680,

%U -6876762625966080,157606194409701376,-3812723805066559488

%N Expansion of e.g.f. cosh(log(1+tan(x))).

%H G. C. Greubel, <a href="/A009125/b009125.txt">Table of n, a(n) for n = 0..250</a>

%F E.g.f.: cosh(log(1+tan(x))).

%F a(n) ~ n! * (-1)^n * 4^n / Pi^(n+1). - _Vaclav Kotesovec_, Jan 22 2015

%t CoefficientList[Series[(1 + (1 + Tan[x])^2)/(2*(1 + Tan[x])), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 22 2015 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(cosh(log(1+tan(x))))) \\ _G. C. Greubel_, Jul 28 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(Log(1+Tan(x))))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 28 2018

%K sign,easy

%O 0,4

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997