login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).
22

%I #36 Jun 18 2021 21:57:03

%S 2,3,4,5,7,9,11,13,16,17,19,23,25,29,31,37,41,43,47,49,53,59,61,64,67,

%T 71,73,79,81,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151,

%U 157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239

%N Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).

%C Invented by the HR Automatic Concept Formation Program. If the sum of divisors is prime, then the number of divisors is prime, i.e., this is a supersequence of A023194.

%C A010055(a(n)) * A010051(A100995(a(n))+1) = 1. - _Reinhard Zumkeller_, Jun 06 2013

%D S. Colton, Automated Theory Formation in Pure Mathematics. New York: Springer (2002)

%H Indranil Ghosh, <a href="/A009087/b009087.txt">Table of n, a(n) for n = 1..12546</a> (terms 1..1000 from T. D. Noe)

%H S. Colton, <a href="http://www.cs.uwaterloo.ca/journals/JIS/colton/joisol.html">Refactorable Numbers - A Machine Invention</a>, J. Integer Sequences, Vol. 2, 1999, #2.

%F p^(q-1), p, q primes.

%e tau(16)=5 and 5 is prime.

%t Select[Range[250],PrimeQ[DivisorSigma[0,#]]&] (* _Harvey P. Dale_, Sep 28 2011 *)

%o (Haskell)

%o a009087 n = a009087_list !! (n-1)

%o a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list

%o -- _Reinhard Zumkeller_, Jun 05 2013

%o (PARI) is(n)=isprime(isprimepower(n)+1) \\ _Charles R Greathouse IV_, Sep 16 2015

%Y Subsequence of A000961.

%Y Cf. A023194, A036454, A203967.

%K nice,nonn,easy

%O 1,1

%A Simon Colton (simonco(AT)cs.york.ac.uk)