The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009078 Expansion of e.g.f. cos(tan(x)*sin(x)) (even powers only). 1
1, 0, -12, -120, -2352, -75840, -1649472, 118634880, 41344643328, 9528901232640, 2213829515240448, 559192086549719040, 156367986602421669888, 48476425507418343751680, 16569615994864645076533248 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} (4^(n-k)*Sum_{t=k..n-k} binomial(2*n,2*t)*((Sum_{j=2*k..2*n-2*t} binomial(j-1,2*k-1)*j!*stirling2(2*n-2*t,j)*(-1)^(n+j)*2^(1-j)))*sum(i=0..k, (i-k)^(2*t)*binomial(2*k,i)*(-1)^(k-i)))/(2*k)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 30 2011
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Cos[Tan[x]Sin[x]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jun 04 2018 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum((4^(n-k)*sum(binomial(2*n, 2*t)*((sum(binomial(j-1, 2*k-1)*j!*stirling2(2*n-2*t, j)*(-1)^(n+j)*2^(1-j), j, 2*k, 2*n-2*t))*sum((i-k)^(2*t)*binomial(2*k, i)*(-1)^(k-i), i, 0, k)), t, k, n-k))/(2*k)!, k, 1, n); /* Vladimir Kruchinin, Jun 30 2011 */
(PARI) x='x+O('x^50); v=Vec(serlaplace(cos(tan(x)*sin(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 24 2018
CROSSREFS
Sequence in context: A012621 A102341 A174561 * A221493 A009149 A010570
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 05:59 EDT 2024. Contains 372758 sequences. (Running on oeis4.)