The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009078 Expansion of e.g.f. cos(tan(x)*sin(x)) (even powers only). 1
 1, 0, -12, -120, -2352, -75840, -1649472, 118634880, 41344643328, 9528901232640, 2213829515240448, 559192086549719040, 156367986602421669888, 48476425507418343751680, 16569615994864645076533248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..240 FORMULA a(n) = Sum_{k=1..n} (4^(n-k)*Sum_{t=k..n-k} binomial(2*n,2*t)*((Sum_{j=2*k..2*n-2*t} binomial(j-1,2*k-1)*j!*stirling2(2*n-2*t,j)*(-1)^(n+j)*2^(1-j)))*sum(i=0..k, (i-k)^(2*t)*binomial(2*k,i)*(-1)^(k-i)))/(2*k)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 30 2011 MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Cos[Tan[x]Sin[x]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jun 04 2018 *) PROG (Maxima) a(n):=if n=0 then 1 else sum((4^(n-k)*sum(binomial(2*n, 2*t)*((sum(binomial(j-1, 2*k-1)*j!*stirling2(2*n-2*t, j)*(-1)^(n+j)*2^(1-j), j, 2*k, 2*n-2*t))*sum((i-k)^(2*t)*binomial(2*k, i)*(-1)^(k-i), i, 0, k)), t, k, n-k))/(2*k)!, k, 1, n); /* Vladimir Kruchinin, Jun 30 2011 */ (PARI) x='x+O('x^50); v=Vec(serlaplace(cos(tan(x)*sin(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 24 2018 CROSSREFS Sequence in context: A012621 A102341 A174561 * A221493 A009149 A010570 Adjacent sequences: A009075 A009076 A009077 * A009079 A009080 A009081 KEYWORD sign AUTHOR R. H. Hardin EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 05:59 EDT 2024. Contains 372758 sequences. (Running on oeis4.)