The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009030 Expansion of e.g.f. cos(log(1+x)*exp(x)). 1
 1, 0, -1, -3, -10, -10, -10, 560, 1220, 24936, -53660, 1220252, -13415576, 140346648, -2192051992, 28246127520, -453007180912, 7224412576832, -124772679402064, 2275818139520912, -43588354415158432, 881182228173945952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA a(n) = Sum_{k=1..n/2} (-1)^(k)*Sum_{i=2*k..n} binomial(n,i)*(Stirling1(i,2*k)*(2*k)^(n-i)), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 29 2011 MATHEMATICA With[{nmax = 30}, CoefficientList[Series[Cos[Log[1 + x]*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 22 2018 *) PROG (Maxima) a(n):=if n=0 then 1 else (sum((-1)^(k)*sum(binomial(n, i)*(stirling1(i, 2*k)*(2*k)^(n-i)), i, 2*k, n), k, 1, n/2)); /* Vladimir Kruchinin, Jun 29 2011 */ (PARI) x='x+O('x^30); Vec(serlaplace(cos(log(1+x)*exp(x)))) \\ G. C. Greubel, Jul 22 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(Log(1+x)*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 22 2018 CROSSREFS Sequence in context: A234642 A038228 A213214 * A168331 A212354 A129489 Adjacent sequences:  A009027 A009028 A009029 * A009031 A009032 A009033 KEYWORD sign,easy AUTHOR EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 00:41 EDT 2021. Contains 343579 sequences. (Running on oeis4.)