login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (4*n)!/(n!)^4.
48

%I #117 Nov 07 2024 06:03:04

%S 1,24,2520,369600,63063000,11732745024,2308743493056,472518347558400,

%T 99561092450391000,21452752266265320000,4705360871073570227520,

%U 1047071828879079131681280,235809301462142612780721600,53644737765488792839237440000,12309355935372581458927646400000

%N a(n) = (4*n)!/(n!)^4.

%C Number of paths of length 4*n in an n X n X n X n grid from (0,0,0,0) to (n,n,n,n).

%C a(n) occurs in Ramanujan's formula 1/Pi = (sqrt(8)/9801) * Sum_{n>=0} (4*n)!/(n!)^4 * (1103 + 26390*n)/396^(4*n) ). - _Susanne Wienand_, Jan 05 2013

%C a(n) is the number of ballot results that lead to a 4-way tie when 4*n voters each cast three votes for three out of four candidates vying for 3 slots on a county commission; each of these ballot results give 3*n votes to each of the four candidates. - _Dennis P. Walsh_, May 02 2013

%C a(n) is the constant term of (X + Y + Z + 1/(X*Y*Z))^(4*n). - _Mark van Hoeij_, May 07 2013

%C In Narumiya and Shiga on page 158 the g.f. is given as a hypergeometric function. - _Michael Somos_, Aug 12 2014

%C Diagonal of the rational function R(x,y,z,w) = 1/(1-(w+x+y+z)). - _Gheorghe Coserea_, Jul 15 2016

%H T. D. Noe, <a href="/A008977/b008977.txt">Table of n, a(n) for n=0..100</a>

%H R. M. Dickau, <a href="https://www.robertdickau.com/path4d.html">Paths through a 4-D lattice</a>

%H Timothy Huber, Daniel Schultz, and Dongxi Ye, <a href="https://doi.org/10.4064/aa220621-19-12">Ramanujan-Sato series for 1/pi</a>, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.

%H Markus Kuba and Alois Panholzer, <a href="https://arxiv.org/abs/2411.03930">Lattice paths and the diagonal of the cube</a>, arXiv:2411.03930 [math.CO], 2024.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.

%H Michaël Moortgat, <a href="https://cla.tcs.uj.edu.pl/history/2020/pdfs/CLA_Moortgat.pdf">The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus</a>, 15th Workshop: Computational Logic and Applications (CLA 2020).

%H N. Narumiya and H. Shiga, <a href="https://www.researchgate.net/publication/268489728_The_mirror_map_for_a_family_of_K3_surfaces_induced_from_the_simplest_3-dimensional_reflexive_polytope">The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope</a>, Proceedings on Moonshine and related topics (Montréal, QC, 1999), 139-161, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001. MR1877764 (2002m:14030).

%F a(n) = A139541(n)*(A001316(n)/A049606(n))^3. - _Reinhard Zumkeller_, Apr 28 2008

%F Self-convolution of A178529, where A178529(n) = (4^n/n!^2) * Product_{k=0..n-1} (8*k + 1)*(8*k + 3).

%F G.f.: hypergeom([1/8, 3/8], [1], 256*x)^2. - _Mark van Hoeij_, Nov 16 2011

%F a(n) ~ 2^(8*n - 1/2) / (Pi*n)^(3/2). - _Vaclav Kotesovec_, Mar 07 2014

%F G.f.: hypergeom([1/4, 2/4, 3/4], [1, 1], 256*x). - _Michael Somos_, Aug 12 2014

%F From _Peter Bala_, Jul 12 2016: (Start)

%F a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(24*n)), where F(x) = 1 + x + 29*x^2 + 2246*x^3 + 239500*x^4 + 30318701*x^5 + 4271201506*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008978, A008979, A186420 and A188662. (End)

%F 0 = (x^2-256*x^3)*y''' + (3*x-1152*x^2)*y'' + (1-816*x)*y' - 24*y, where y is the g.f. - _Gheorghe Coserea_, Jul 15 2016

%F From _Peter Bala_, Jul 17 2016: (Start)

%F a(n) = Sum_{k = 0..3*n} (-1)^(n+k)*binomial(4*n,n + k)* binomial(n + k,k)^4.

%F a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(4*n,k)*binomial(n + k,k)^4. (End)

%F E.g.f.: 3F3(1/4,1/2,3/4; 1,1,1; 256*x). - _Ilya Gutkovskiy_, Jan 23 2018

%F From _Peter Bala_, Feb 16 2020: (Start)

%F a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.

%F a(n) = [(x*y*z)^n] (1 + x + y + z)^(4*n). (End)

%F D-finite with recurrence n^3*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - _R. J. Mathar_, Aug 01 2022

%F a(n) = 24*A082368(n). - _R. J. Mathar_, Jun 21 2023

%e a(13)=52!/(13!)^4=53644737765488792839237440000 is the number of ways of dealing the four hands in Bridge or Whist. - _Henry Bottomley_, Oct 06 2000

%e a(1)=24 since, in a 4-voter 3-vote election that ends in a four-way tie for candidates A, B, C, and D, there are 4! ways to arrange the needed vote sets {A,B,C}, {A,B,D}, {A,C,D}, and {B,C,D} among the 4 voters. - _Dennis P. Walsh_, May 02 2013

%e G.f. = 1 + 24*x + 2520*x^2 + 369600*x^3 + 63063000*x^4 + 11732745024*x^5 + ...

%p A008977 := n->(4*n)!/(n!)^4;

%t Table[(4n)!/(n!)^4,{n,0,16}] (* _Harvey P. Dale_, Oct 24 2011 *)

%t a[ n_] := If[ n < 0, 0, (4 n)! / n!^4]; (* _Michael Somos_, Aug 12 2014 *)

%t a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/4, 2/4, 3/4}, {1, 1}, 256 x], {x, 0, n}]; (* _Michael Somos_, Aug 12 2014 *)

%o (Maxima) A008977(n):=(4*n)!/(n!)^4$ makelist(A008977(n),n,0,20); /* _Martin Ettl_, Nov 15 2012 */

%o (Magma) [Factorial(4*n)/Factorial(n)^4: n in [0..20]]; // _Vincenzo Librandi_, Aug 13 2014

%o (PARI) a(n) = (4*n)!/n!^4; \\ _Gheorghe Coserea_, Jul 15 2016

%o (Python)

%o from math import factorial

%o def A008977(n): return factorial(n<<2)//factorial(n)**4 # _Chai Wah Wu_, Mar 15 2023

%Y Cf. A000984, A006480, A008978, A178529, A000897, A002894, A002897, A006480, A008979, A186420, A188662.

%Y Row 4 of A187783.

%Y Related to diagonal of rational functions: A268545-A268555.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_