login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Final digit of triangular number n*(n+1)/2.
12

%I #43 Sep 08 2022 08:44:36

%S 0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0,1,3,6,0,5,1,8,6,5,5,6,8,1,

%T 5,0,6,3,1,0,0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0,1,3,6,0,5,1,8,

%U 6,5,5,6,8,1,5,0,6,3,1,0,0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0

%N Final digit of triangular number n*(n+1)/2.

%H G. C. Greubel, <a href="/A008954/b008954.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1).

%F a(1) = 1, a(n+1) = (a(n) + n + 1) mod 10.

%F Periodic with period 20: repeat [0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3, 1,0]. - _Franklin T. Adams-Watters_, Mar 13 2006

%F It follows that all triangular numbers end with a digit of 0, 1, 3, 5, 6, or 8, and thus none end with a digit of 2, 4, 7, or 9. - _Harvey P. Dale_, Dec 31 2014

%F a(n) = n*(n+1)/2 mod 10. - _Ant King_, Apr 26 2009

%F From _R. J. Mathar_, Apr 15 2010: (Start)

%F a(n) = a(n-5) - a(n-10) + a(n-15).

%F G.f.: x*(1 +3*x +6*x^2 +5*x^4 +5*x^6 +5*x^8 +6*x^10 +3*x^11 +x^12)/(1 -x^5 +x^10 -x^15). (End)

%F a(n) = A010879(A000217(n)). - _Michel Marcus_, May 26 2022

%p seq(mod(binomial(n+1, 2),10), n = 0 .. 100); # _G. C. Greubel_, Sep 14 2019

%t Table[Mod[n*(n+1)/2, 10], {n, 0, 100}]

%t LinearRecurrence[{0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1},{0,1,3,6,0,5,1,8,6,5,5, 6,8,1,5},110] (* _Harvey P. Dale_, Dec 31 2014 *)

%o (PARI) a(n)=n*(n+1)/2%10 \\ _Charles R Greathouse IV_, Mar 05 2014

%o (Magma) [Binomial(n+1,2) mod 10: n in [0..100]]; // _G. C. Greubel_, Sep 14 2019

%o (Sage) [Mod(binomial(n+1,2), 10) for n in (0..100)] # _G. C. Greubel_, Sep 14 2019

%o (GAP) List([0..100], n-> (Binomial(n+1,2) mod 10) ); # _G. C. Greubel_, Sep 14 2019

%Y Cf. A000217, A010879, A061501, A008953.

%Y First differences of A111072.

%K nonn,base,easy

%O 0,3

%A _N. J. A. Sloane_