login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = prime(n) + 1.
192

%I #123 May 11 2024 21:52:52

%S 3,4,6,8,12,14,18,20,24,30,32,38,42,44,48,54,60,62,68,72,74,80,84,90,

%T 98,102,104,108,110,114,128,132,138,140,150,152,158,164,168,174,180,

%U 182,192,194,198,200,212,224,228,230,234,240,242,252,258,264,270,272,278,282,284

%N a(n) = prime(n) + 1.

%C Sum of divisors of prime(n). - _Labos Elemer_, May 24 2001

%C For n > 1, there are a(n) more nonnegative Hurwitz quaternions than nonnegative Lipschitz quaternions, which are counted in A239396 and A239394, respectively. - _T. D. Noe_, Mar 31 2014

%C These are the numbers which are in A239708 or in A187813, but excluding the first 3 terms of A187813, i.e., a number m is a term if and only if m is a term > 2 of A187813, or m is the sum of two distinct powers of 2 such that m - 1 is prime. This means that a number m is a term if and only if m is a term > 2 such that there is no base b with a base-b digital sum of b, or b = 2 is the only base for which the base-b digital sum of m is b. a(6) is the only term such that a(n) = A187813(n); for n < 6, we have a(n) > A187813(n), and for n > 6, we have a(n) < A187813(n). - _Hieronymus Fischer_, Apr 10 2014

%C Does not contain any number of the format 1 + q + ... + q^e, q prime, e >= 2, i.e., no terms of A060800, A131991, A131992, A131993 etc. [Proof: that requires 1 + p = 1 + q + ... + q^e, or p = q*(1 + ... + q^(e-1)). This is not solvable because the left hand side is prime, the right hand side composite.] - _R. J. Mathar_, Mar 15 2018

%C 1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is odd. - _Amiram Eldar_, Jan 23 2021

%D C. W. Trigg, Problem #1210, Series Formation, J. Rec. Math., 15 (1982), 221-222.

%H Reinhard Zumkeller, <a href="/A008864/b008864.txt">Table of n, a(n) for n = 1..10000</a>

%H R. P. Boas and N. J. A. Sloane, <a href="/A005381/a005381.pdf">Correspondence, 1974</a>

%H N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=6X2D497is6Y">Eureka Sequences</a>, Numberphile video (2021).

%F a(n) = prime(n) + 1 = A000040(n) + 1.

%F a(n) = A000005(A034785(n)) = A000203(A000040(n)). - _Labos Elemer_, May 24 2001

%F a(n) = A084920(n) / A006093(n). - _Reinhard Zumkeller_, Aug 06 2007

%F A239703(a(n)) <= 1. - _Hieronymus Fischer_, Apr 10 2014

%F From _Ilya Gutkovskiy_, Jul 30 2016: (Start)

%F a(n) ~ n*log(n).

%F Product_{n>=1} (1 + 2/(a(n)*(a(n) - 2))) = 5/2. (End)

%p A008864:=n->ithprime(n)+1; seq(A008864(n), n=1..50); # _Wesley Ivan Hurt_, Apr 11 2014

%t Prime[Range[70]]+1 (* _Vladimir Joseph Stephan Orlovsky_, Apr 27 2008 *)

%o (PARI) forprime(p=2,1e3,print1(p+1", ")) \\ _Charles R Greathouse IV_, Jun 16 2011

%o (PARI) A008864(n) = (1+prime(n)); \\ _Antti Karttunen_, Mar 14 2021

%o (Haskell)

%o a008864 = (+ 1) . a000040

%o -- _Reinhard Zumkeller_, Sep 04 2012, Oct 08 2012

%o (Magma) [NthPrime(n)+1: n in [1..70]]; // _Vincenzo Librandi_, Jul 30 2016

%o (Sage) [nth_prime(n) +1 for n in (1..70)] # _G. C. Greubel_, May 20 2019

%Y Cf. A000040, A060800, A131991, A131992, A131993, A141468.

%Y Cf. A007953, A079696, A187813, A239703, A239708.

%Y Column 1 of A341605, column 2 of A286623 and of A328464.

%Y Partial sums of A125266.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, _R. K. Guy_