login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
210

%I #152 Nov 10 2024 09:24:40

%S 2,6,18,54,162,486,1458,4374,13122,39366,118098,354294,1062882,

%T 3188646,9565938,28697814,86093442,258280326,774840978,2324522934,

%U 6973568802,20920706406,62762119218,188286357654,564859072962,1694577218886,5083731656658,15251194969974

%N Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).

%C Definitions of Pisot and related sequences:

%C Pisot sequence E(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2) + 1/2) = nearest integer to a(n-1)^2/a(n-2), with 0 < x < y.

%C Pisot sequence L(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2)).

%C Pisot sequence P(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2) - 1/2).

%C Pisot sequence T(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)).

%C Pisot/Shallit sequence S(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)+1).

%C A025192 is the main entry for the sequence of numbers 2*3^n.

%C Number of tilings of a 4 X (4n+4) rectangle into T tetrominoes.

%C Numbers n such that 3^n = n/2 mod n. Cf. A066601 3^n mod n. - _Zak Seidov_, Aug 26 2006, Nov 20 2008

%C For n >= 1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3} we have f(x) != y. - Aleksandar M. Janjic and _Milan Janjic_, Mar 27 2007

%C a(n) = A048473(n) + 1 = A048473(n) + A000012(n). a(n) = A052919(n+1)-1. a(n) = A115099(n) - 2. a(n) = A100774(n) + 2. See A007395. - _Paul Curtz_, Jan 20 2009

%C a(n+1) is the number of compositions of n when there are 2 types of each natural number. - _Milan Janjic_, Aug 13 2010

%C 2*Sum_{n>=2} 1/A083667(n) = 2*Sum_{n>=2} 2^(-n)*3^(-((n*(n-1))/2)) = Sum_{n>=1} 1/Product_{k=1..n} A008776(k) = Sum_{n>=1} 1/Product_{k=1..n} 2*3^k = 0.17609845431233461692099660022134... . - _Alexander R. Povolotsky_, Aug 08 2011

%C Number of monic squarefree polynomials over F_3 of degree n+1. - _Charles R Greathouse IV_, Feb 07 2012

%C a(n) is the sum of the elements of the n-th power of the matrix {{1, 2}, {2, 1}}. - _Griffin N. Macris_, Mar 25 2016

%C Let D(m) denote the set of divisors of a number m, and consider s1(m) and s2(m) the sums of those divisors that are congruent to 1 and 2 (mod 3) respectively. This sequence lists the numbers m such that s1(m) = 1 and s2(m) = 2. - _Michel Lagneau_, Feb 09 2017

%C a(n) is the multiplicative order of k modulo 3^(n+1), where k is any number congruent to 2 or 5 modulo 9. Note that for n > 0, k is a primitive root modulo 3^(n+1) if and only if k == 2, 5 (mod 9). - _Jianing Song_, Apr 20 2021

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).

%H Franklin T. Adams-Watters, <a href="/A008776/b008776.txt">Table of n, a(n) for n = 0..200</a>

%H Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, <a href="https://arxiv.org/abs/2411.02897">Patterns in Multi-dimensional Permutations</a>, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=170">Encyclopedia of Combinatorial Structures 170</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Craig Knecht, <a href="/A008776/a008776.png">Sphinx tiling of a repetitive shape.</a>

%H C. Moore, <a href="http://arXiv.org/abs/math.CO/9905012">Some Polyomino Tilings of the Plane</a>, arXiv:math/9905012 [math.CO], 1999.

%H C. Pisot, <a href="http://archive.numdam.org/article/ASNSP_1938_2_7_3-4_205_0.pdf">La répartition modulo 1 et les nombres algébriques</a>, Ann. Scu. Norm. Sup. Pisa 2 ser, vol 7. no 3-4 (1938) p 205-248.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (3).

%F a(n) = 2*3^n.

%F a(n) = 3*a(n-1).

%F G.f.: 2/(1-3*x). - _Philippe Deléham_, Oct 08 2007

%F a(n-1) = phi(3^n). - _Artur Jasinski_, Nov 19 2008

%F E.g.f.: 2*exp(3*x). - _Mohammad K. Azarian_, Jan 15 2009

%F If p[i]=2, (i >= 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1)=det A. - _Milan Janjic_, Apr 29 2010

%F G.f.: ((1/2)/G(0)-1)/x^2 where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Dec 22 2012

%F G.f.: -G(0)/x where G(k) = 1 - 1/(1-2*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 25 2013

%F G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-2)/(1 - x*(2*k+5)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 19 2013

%F G.f.: W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 28 2013

%p # E(x,y) is f(n,x,y,1/2), T(x,y) is f(n,x,y,0), and S(x,y) is f(n,x,y,1).

%p f:=proc(n,x,y,r) option remember;

%p if n=0 then x

%p elif n=1 then y

%p else floor(f(n-1,x,y,r)^2/f(n-2,x,y,r) + r); fi; end;

%p [seq(f(n,2,6,1/2),n=0..30)];

%p # _N. J. A. Sloane_, Jul 30 2016

%t Table[EulerPhi[3^n], {n, 0, 100}] (* _Artur Jasinski_, Nov 19 2008 *)

%t Table[MatrixPower[{{1,2},{1,2}},n][[1]][[2]],{n,0,44}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2010 *)

%t NestList[3#&,2,50] (* _Harvey P. Dale_, Nov 28 2022 *)

%o (PARI) a(n)=3^n<<1 \\ corrected by _Michel Marcus_, Aug 03 2015

%o (Haskell)

%o a008776 = (* 2) . (3 ^)

%o a008776_list = iterate (* 3) 2 -- _Reinhard Zumkeller_, Oct 19 2015

%o (Magma) [2*3^n: n in [0..30]]; // _G. C. Greubel_, Sep 11 2019

%o (Sage) [2*3^n for n in (0..30)] # _G. C. Greubel_, Sep 11 2019

%o (GAP) List([0..30], n-> 2*3^n); # _G. C. Greubel_, Sep 11 2019

%Y Apart from initial term, same as A025192.

%Y Cf. A080643.

%Y Cf. A000244.

%K easy,nonn

%O 0,1

%A _N. J. A. Sloane_, _David W. Wilson_

%E Jasinski formula corrected by _Charles R Greathouse IV_, Feb 18 2011