login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)).
8

%I #52 Sep 08 2022 08:44:36

%S 1,1,2,3,5,6,9,11,14,17,21,24,29,33,38,43,49,54,61,67,74,81,89,96,105,

%T 113,122,131,141,150,161,171,182,193,205,216,229,241,254,267,281,294,

%U 309,323,338,353,369,384,401,417,434,451,469,486,505,523,542,561

%N Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)).

%C For n>=1, the set {A008747(6n+-1)} is the set of numbers of the form a^2 + 5*(a+1)^2 for -inf < a < inf. Furthermore the set A008747(6n) is A033581(n). - _Kieren MacMillan_, Dec 19 2007

%C For n>1, a(n-1) is the number of aperiodic necklaces (Lyndon words) with k<=3 black beads and n-k white beads. For n=4 we have for example a(3)=3 aperiodic necklaces: BWWW, BBWW and BBBW. BWBW is periodic and is not counted. - _Herbert Kociemba_, Oct 23 2016

%H Seiichi Manyama, <a href="/A008747/b008747.txt">Table of n, a(n) for n = 0..10000</a>

%H Robert Morris, <a href="https://arxiv.org/abs/math/0702370">Minimal percolating sets in bootstrap percolation</a>, arXiv:math/0702370 [math.CO], 2007-2008.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1).

%F G.f.: (1+x^4)/((1-x)*(1-x^2)*(1-x^3)).

%F a(n) = ceiling((n+1)^2/6).

%F a(n) = (12*n + 23 + 6*n^2 + 9*(-1)^n + 4*A061347(n))/36. - _R. J. Mathar_, Mar 15 2011

%F a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=6, a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 5. - _Harvey P. Dale_, Sep 05 2012

%F From _Michael Somos_, Oct 25 2016: (Start)

%F Euler transform of length 8 sequence [ 1, 1, 1, 1, 0, 0, 0, -1].

%F a(n) = a(-2-n) for all n in Z.

%F a(2*n-1) = A071619(n).

%F a(3*n-1) = 2*A077043(n).

%F a(n) - a(n-1) = A051274(n). (End)

%e G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 11*x^7 + 14*x^8 + ...

%p A008747:=n->ceil((n+1)^2/6): seq(A008747(n), n=0..100); # _Wesley Ivan Hurt_, Oct 25 2016

%t CoefficientList[Series[(1+x^4)/((1-x)(1-x^2)(1-x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,5,6},60] (* _Harvey P. Dale_, Sep 05 2012 *)

%o (PARI) Vec((1+x^4)/((1-x)*(1-x^2)*(1-x^3))+O(x^60)) \\ _Charles R Greathouse IV_, Sep 25 2012

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^4)/((1-x)*(1-x^2)*(1-x^3)) )); // _G. C. Greubel_, Aug 03 2019

%o (Sage) ((1+x^4)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # _G. C. Greubel_, Aug 03 2019

%o (GAP) a:=[1,1,2,3,5,6];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # _G. C. Greubel_, Aug 03 2019

%Y Cf. A008747, A033581, A051274, A061347, A071619, A077043.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_