login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Molien series for 3-dimensional group [2, n] = *22n.
5

%I #44 Sep 08 2022 08:44:36

%S 1,2,3,4,5,6,7,8,9,10,11,13,15,17,19,21,23,25,27,29,31,33,36,39,42,45,

%T 48,51,54,57,60,63,66,70,74,78,82,86,90,94,98,102,106,110,115,120,125,

%U 130,135,140,145,150,155,160,165,171,177,183,189,195,201,207,213,219

%N Molien series for 3-dimensional group [2, n] = *22n.

%H Vincenzo Librandi, <a href="/A008729/b008729.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=194">Encyclopedia of Combinatorial Structures 194</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,0,0,1,-2,1).

%F From _Mitch Harris_, Sep 08 2008: (Start)

%F a(n) = Sum_{j=0..n+11} floor(j/11).

%F a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)

%F a(n) = A218530(n+11). - _Philippe Deléham_, Apr 03 2013

%F From _Chai Wah Wu_, Jul 08 2016: (Start)

%F a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.

%F G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

%e ..1....2....3....4....5....6....7....8....9...10...11

%e .13...15...17...19...21...23...25...27...29...31...33

%e .36...39...42...45...48...51...54...57...60...63...66

%e .70...74...78...82...86...90...94...98..102..106..110

%e 115..120..125..130..135..140..145..150..155..160..165

%e 171..177..183..189..195..201..207..213..219..225..231

%e 238..245..252..259..266..273..280..287..294..301..308

%e 316..324..332..340..348..356..364..372..380..388..396

%e 405..414..423..432..441..450..459..468..477..486..495

%e 505..515..525..535..545..555..565..575..585..595..605

%e ...

%e The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.

%e - _Philippe Deléham_, Apr 03 2013

%p g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by _G. C. Greubel_, Jul 30 2019

%t CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* _Vincenzo Librandi_, Jun 11 2013 *)

%o (PARI) my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ _G. C. Greubel_, Jul 30 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // _G. C. Greubel_, Jul 30 2019

%o (Sage) (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # _G. C. Greubel_, Jul 30 2019

%o (GAP) a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # _G. C. Greubel_, Jul 30 2019

%Y Cf. A001840, A001972, A008724-A008728, A008732, A218530.

%K nonn,tabf,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Mar 14 2010