login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of direct sum of 6 copies of D_4 lattice.
1

%I #19 May 30 2022 12:29:41

%S 1,144,8784,294336,5883984,71916768,547468992,2882049408,12927121488,

%T 45761350608,150532923744,416276152128,1118182645440,2614241349216,

%U 6094718050176,12618123283584,26478496036944

%N Theta series of direct sum of 6 copies of D_4 lattice.

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.

%H Seiichi Manyama, <a href="/A008662/b008662.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Da#D4">Index entries for sequences related to D_4 lattice</a>

%e G.f. = 1 + 144*q + 8784*q^2 + 294336*q^3 + 5883984*q^4 + 71916768*q^5 + ... - _Michael Somos_, May 27 2022

%t terms = 17; s = (1/2 (EllipticTheta[3, 0, q]^4 + EllipticTheta[4, 0, q]^4) )^6 + O[q]^(2 terms); CoefficientList[s, q^2] (* _Jean-François Alcover_, Jul 08 2017 *)

%t a[ n_] := With[{e1 = q*QPochhammer[q]^24, e2 = q^2*QPochhammer[q^2]^24}, SeriesCoefficient[(e1 + 64* e2)^3 / (e1* e2), {q, 0, n}]]; (* _Michael Somos_, May 27 2022 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_